Abstract:Audio-Visual Video Parsing (AVVP) task aims to detect and temporally locate events within audio and visual modalities. Multiple events can overlap in the timeline, making identification challenging. While traditional methods usually focus on improving the early audio-visual encoders to embed more effective features, the decoding phase -- crucial for final event classification, often receives less attention. We aim to advance the decoding phase and improve its interpretability. Specifically, we introduce a new decoding paradigm, \underline{l}abel s\underline{e}m\underline{a}ntic-based \underline{p}rojection (LEAP), that employs labels texts of event categories, each bearing distinct and explicit semantics, for parsing potentially overlapping events.LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings. This process, enriched by modeling cross-modal (audio/visual-label) interactions, gradually disentangles event semantics within video segments to refine relevant label embeddings, guaranteeing a more discriminative and interpretable decoding process. To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function. This function leverages the Intersection over Union of audio and visual events (EIoU) as a novel metric to calibrate audio-visual similarities at the feature level, accommodating the varied event densities across modalities. Extensive experiments demonstrate the superiority of our method, achieving new state-of-the-art performance for AVVP and also enhancing the relevant audio-visual event localization task.
Abstract:The Audio-Visual Video Parsing task aims to identify and temporally localize the events that occur in either or both the audio and visual streams of audible videos. It often performs in a weakly-supervised manner, where only video event labels are provided, \ie, the modalities and the timestamps of the labels are unknown. Due to the lack of densely annotated labels, recent work attempts to leverage pseudo labels to enrich the supervision. A commonly used strategy is to generate pseudo labels by categorizing the known video event labels for each modality. However, the labels are still confined to the video level, and the temporal boundaries of events remain unlabeled. In this paper, we propose a new pseudo label generation strategy that can explicitly assign labels to each video segment by utilizing prior knowledge learned from the open world. Specifically, we exploit the large-scale pretrained models, namely CLIP and CLAP, to estimate the events in each video segment and generate segment-level visual and audio pseudo labels, respectively. We then propose a new loss function to exploit these pseudo labels by taking into account their category-richness and segment-richness. A label denoising strategy is also adopted to further improve the visual pseudo labels by flipping them whenever abnormally large forward losses occur. We perform extensive experiments on the LLP dataset and demonstrate the effectiveness of each proposed design and we achieve state-of-the-art video parsing performance on all types of event parsing, \ie, audio event, visual event, and audio-visual event. We also examine the proposed pseudo label generation strategy on a relevant weakly-supervised audio-visual event localization task and the experimental results again verify the benefits and generalization of our method.
Abstract:The Text to Audible-Video Generation (TAVG) task involves generating videos with accompanying audio based on text descriptions. Achieving this requires skillful alignment of both audio and video elements. To support research in this field, we have developed a comprehensive Text to Audible-Video Generation Benchmark (TAVGBench), which contains over 1.7 million clips with a total duration of 11.8 thousand hours. We propose an automatic annotation pipeline to ensure each audible video has detailed descriptions for both its audio and video contents. We also introduce the Audio-Visual Harmoni score (AVHScore) to provide a quantitative measure of the alignment between the generated audio and video modalities. Additionally, we present a baseline model for TAVG called TAVDiffusion, which uses a two-stream latent diffusion model to provide a fundamental starting point for further research in this area. We achieve the alignment of audio and video by employing cross-attention and contrastive learning. Through extensive experiments and evaluations on TAVGBench, we demonstrate the effectiveness of our proposed model under both conventional metrics and our proposed metrics.
Abstract:This paper focuses on the Audio-Visual Question Answering (AVQA) task that aims to answer questions derived from untrimmed audible videos. To generate accurate answers, an AVQA model is expected to find the most informative audio-visual clues relevant to the given questions. In this paper, we propose to explicitly consider fine-grained visual objects in video frames (object-level clues) and explore the multi-modal relations(i.e., the object, audio, and question) in terms of feature interaction and model optimization. For the former, we present an end-to-end object-oriented network that adopts a question-conditioned clue discovery module to concentrate audio/visual modalities on respective keywords of the question and designs a modality-conditioned clue collection module to highlight closely associated audio segments or visual objects. For model optimization, we propose an object-aware adaptive-positivity learning strategy that selects the highly semantic-matched multi-modal pair as positivity. Specifically, we design two object-aware contrastive loss functions to identify the highly relevant question-object pairs and audio-object pairs, respectively. These selected pairs are constrained to have larger similarity values than the mismatched pairs. The positivity-selecting process is adaptive as the positivity pairs selected in each video frame may be different. These two object-aware objectives help the model understand which objects are exactly relevant to the question and which are making sounds. Extensive experiments on the MUSIC-AVQA dataset demonstrate the proposed method is effective in finding favorable audio-visual clues and also achieves new state-of-the-art question-answering performance.
Abstract:We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
Abstract:Audio-Visual Video Parsing is a task to predict the events that occur in video segments for each modality. It often performs in a weakly supervised manner, where only video event labels are provided, i.e., the modalities and the timestamps of the labels are unknown. Due to the lack of densely annotated labels, recent work attempts to leverage pseudo labels to enrich the supervision. A commonly used strategy is to generate pseudo labels by categorizing the known event labels for each modality. However, the labels are still limited to the video level, and the temporal boundaries of event timestamps remain unlabeled. In this paper, we propose a new pseudo label generation strategy that can explicitly assign labels to each video segment by utilizing prior knowledge learned from the open world. Specifically, we exploit the CLIP model to estimate the events in each video segment based on visual modality to generate segment-level pseudo labels. A new loss function is proposed to regularize these labels by taking into account their category-richness and segmentrichness. A label denoising strategy is adopted to improve the pseudo labels by flipping them whenever high forward binary cross entropy loss occurs. We perform extensive experiments on the LLP dataset and demonstrate that our method can generate high-quality segment-level pseudo labels with the help of our newly proposed loss and the label denoising strategy. Our method achieves state-of-the-art audio-visual video parsing performance.
Abstract:We propose a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark, i.e., AVSBench, providing pixel-wise annotations for sounding objects in audible videos. It contains three subsets: AVSBench-object (Single-source subset, Multi-sources subset) and AVSBench-semantic (Semantic-labels subset). Accordingly, three settings are studied: 1) semi-supervised audio-visual segmentation with a single sound source; 2) fully-supervised audio-visual segmentation with multiple sound sources, and 3) fully-supervised audio-visual semantic segmentation. The first two settings need to generate binary masks of sounding objects indicating pixels corresponding to the audio, while the third setting further requires generating semantic maps indicating the object category. To deal with these problems, we propose a new baseline method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage audio-visual mapping during training. Quantitative and qualitative experiments on AVSBench compare our approach to several existing methods for related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench. Online benchmark is available at http://www.avlbench.opennlplab.cn.
Abstract:Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. It is pivotal to learn the discriminative features for each video segment. Unlike existing work focusing on audio-visual feature fusion, in this paper, we propose a new contrastive positive sample propagation (CPSP) method for better deep feature representation learning. The contribution of CPSP is to introduce the available full or weak label as a prior that constructs the exact positive-negative samples for contrastive learning. Specifically, the CPSP involves comprehensive contrastive constraints: pair-level positive sample propagation (PSP), segment-level and video-level positive sample activation (PSA$_S$ and PSA$_V$). Three new contrastive objectives are proposed (\emph{i.e.}, $\mathcal{L}_{\text{avpsp}}$, $\mathcal{L}_\text{spsa}$, and $\mathcal{L}_\text{vpsa}$) and introduced into both the fully and weakly supervised AVE localization. To draw a complete picture of the contrastive learning in AVE localization, we also study the self-supervised positive sample propagation (SSPSP). As a result, CPSP is more helpful to obtain the refined audio-visual features that are distinguishable from the negatives, thus benefiting the classifier prediction. Extensive experiments on the AVE and the newly collected VGGSound-AVEL100k datasets verify the effectiveness and generalization ability of our method.
Abstract:We propose to explore a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark (AVSBench), providing pixel-wise annotations for the sounding objects in audible videos. Two settings are studied with this benchmark: 1) semi-supervised audio-visual segmentation with a single sound source and 2) fully-supervised audio-visual segmentation with multiple sound sources. To deal with the AVS problem, we propose a novel method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage the audio-visual mapping during training. Quantitative and qualitative experiments on the AVSBench compare our approach to several existing methods from related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench.
Abstract:Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. In order to learn discriminative features for a classifier, it is pivotal to identify the helpful (or positive) audio-visual segment pairs while filtering out the irrelevant ones, regardless whether they are synchronized or not. To this end, we propose a new positive sample propagation (PSP) module to discover and exploit the closely related audio-visual pairs by evaluating the relationship within every possible pair. It can be done by constructing an all-pair similarity map between each audio and visual segment, and only aggregating the features from the pairs with high similarity scores. To encourage the network to extract high correlated features for positive samples, a new audio-visual pair similarity loss is proposed. We also propose a new weighting branch to better exploit the temporal correlations in weakly supervised setting. We perform extensive experiments on the public AVE dataset and achieve new state-of-the-art accuracy in both fully and weakly supervised settings, thus verifying the effectiveness of our method.