Abstract:Single domain generalization (Single-DG) intends to develop a generalizable model with only one single training domain to perform well on other unknown target domains. Under the domain-hungry configuration, how to expand the coverage of source domain and find intrinsic causal features across different distributions is the key to enhancing the models' generalization ability. Existing methods mainly depend on the meticulous design of finite image-level transformation techniques and learning invariant features across domains based on statistical correlation between samples and labels in source domain. This makes it difficult to capture stable semantics between source and target domains, which hinders the improvement of the model's generalization performance. In this paper, we propose a novel causality-inspired latent feature augmentation method for Single-DG by learning the meta-knowledge of feature-level transformation based on causal learning and interventions. Instead of strongly relying on the finite image-level transformation, with the learned meta-knowledge, we can generate diverse implicit feature-level transformations in latent space based on the consistency of causal features and diversity of non-causal features, which can better compensate for the domain-hungry defect and reduce the strong reliance on initial finite image-level transformations and capture more stable domain-invariant causal features for generalization. Extensive experiments on several open-access benchmarks demonstrate the outstanding performance of our model over other state-of-the-art single domain generalization and also multi-source domain generalization methods.
Abstract:Complementary RGB and TIR modalities enable RGB-T tracking to achieve competitive performance in challenging scenarios. Therefore, how to better fuse cross-modal features is the core issue of RGB-T tracking. Some previous methods either insufficiently fuse RGB and TIR features, or depend on intermediaries containing information from both modalities to achieve cross-modal information interaction. The former does not fully exploit the potential of using only RGB and TIR information of the template or search region for channel and spatial feature fusion, and the latter lacks direct interaction between the template and search area, which limits the model's ability to fully exploit the original semantic information of both modalities. To alleviate these limitations, we explore how to improve the performance of a visual Transformer by using direct fusion of cross-modal channels and spatial features, and propose CSTNet. CSTNet uses ViT as a backbone and inserts cross-modal channel feature fusion modules (CFM) and cross-modal spatial feature fusion modules (SFM) for direct interaction between RGB and TIR features. The CFM performs parallel joint channel enhancement and joint multilevel spatial feature modeling of RGB and TIR features and sums the features, and then globally integrates the sum feature with the original features. The SFM uses cross-attention to model the spatial relationship of cross-modal features and then introduces a convolutional feedforward network for joint spatial and channel integration of multimodal features. Comprehensive experiments show that CSTNet achieves state-of-the-art performance on three public RGB-T tracking benchmarks. Code is available at https://github.com/LiYunfengLYF/CSTNet.
Abstract:The robustness of driving perception systems under unprecedented conditions is crucial for safety-critical usages. Latest advancements have prompted increasing interests towards multi-LiDAR perception. However, prevailing driving datasets predominantly utilize single-LiDAR systems and collect data devoid of adverse conditions, failing to capture the complexities of real-world environments accurately. Addressing these gaps, we proposed Place3D, a full-cycle pipeline that encompasses LiDAR placement optimization, data generation, and downstream evaluations. Our framework makes three appealing contributions. 1) To identify the most effective configurations for multi-LiDAR systems, we introduce a Surrogate Metric of the Semantic Occupancy Grids (M-SOG) to evaluate LiDAR placement quality. 2) Leveraging the M-SOG metric, we propose a novel optimization strategy to refine multi-LiDAR placements. 3) Centered around the theme of multi-condition multi-LiDAR perception, we collect a 364,000-frame dataset from both clean and adverse conditions. Extensive experiments demonstrate that LiDAR placements optimized using our approach outperform various baselines. We showcase exceptional robustness in both 3D object detection and LiDAR semantic segmentation tasks, under diverse adverse weather and sensor failure conditions. Code and benchmark toolkit are publicly available.
Abstract:Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at \url{https://github.com/AI-for-Science/MoZi}.
Abstract:Robustness is a crucial factor for the successful deployment of robots in unstructured environments, particularly in the domain of Simultaneous Localization and Mapping (SLAM). Simulation-based benchmarks have emerged as a highly scalable approach for robustness evaluation compared to real-world data collection. However, crafting a challenging and controllable noisy world with diverse perturbations remains relatively under-explored. To this end, we propose a novel, customizable pipeline for noisy data synthesis, aimed at assessing the resilience of multi-modal SLAM models against various perturbations. This pipeline incorporates customizable hardware setups, software components, and perturbed environments. In particular, we introduce comprehensive perturbation taxonomy along with a perturbation composition toolbox, allowing the transformation of clean simulations into challenging noisy environments. Utilizing the pipeline, we instantiate the Robust-SLAM benchmark, which includes diverse perturbation types, to evaluate the risk tolerance of existing advanced multi-modal SLAM models. Our extensive analysis uncovers the susceptibilities of existing SLAM models to real-world disturbance, despite their demonstrated accuracy in standard benchmarks. Our perturbation synthesis toolbox, SLAM robustness evaluation pipeline, and Robust-SLAM benchmark will be made publicly available at https://github.com/Xiaohao-Xu/SLAM-under-Perturbation/.
Abstract:This paper presents Graph-of-Thought (GoT), a new model for workflow automation that enhances the flexibility and efficiency of Large Language Models (LLMs) in complex task execution. GoT advances beyond traditional linear and tree-like cognitive models with a graph structure that enables dynamic path selection. The open-source engine GoTFlow demonstrates the practical application of GoT, facilitating automated, data-driven decision-making across various domains. Despite challenges in complexity and transparency, GoTFlow's potential for improving business processes is significant, promising advancements in both efficiency and decision quality with continuous development.
Abstract:Physics-informed neural networks (PINNs) have shown promising potential for solving partial differential equations (PDEs) using deep learning. However, PINNs face training difficulties for evolutionary PDEs, particularly for dynamical systems whose solutions exhibit multi-scale or turbulent behavior over time. The reason is that PINNs may violate the temporal causality property since all the temporal features in the PINNs loss are trained simultaneously. This paper proposes to use implicit time differencing schemes to enforce temporal causality, and use transfer learning to sequentially update the PINNs in space as surrogates for PDE solutions in different time frames. The evolving PINNs are better able to capture the varying complexities of the evolutionary equations, while only requiring minor updates between adjacent time frames. Our method is theoretically proven to be convergent if the time step is small and each PINN in different time frames is well-trained. In addition, we provide state-of-the-art (SOTA) numerical results for a variety of benchmarks for which existing PINNs formulations may fail or be inefficient. We demonstrate that the proposed method improves the accuracy of PINNs approximation for evolutionary PDEs and improves efficiency by a factor of 4-40x.
Abstract:Multimodal semantic segmentation is developing rapidly, but the modality of RGB-Polarization remains underexplored. To delve into this problem, we construct a UPLight RGB-P segmentation benchmark with 12 typical underwater semantic classes. In this work, we design the ShareCMP, an RGB-P semantic segmentation framework with a shared dual-branch architecture, which reduces the number of parameters by about 26-33% compared to previous dual-branch models. It encompasses a Polarization Generate Attention (PGA) module designed to generate polarization modal images with richer polarization properties for the encoder. In addition, we introduce the Class Polarization-Aware Loss (CPALoss) to improve the learning and understanding of the encoder for polarization modal information and to optimize the PGA module. With extensive experiments on a total of three RGB-P benchmarks, our ShareCMP achieves state-of-the-art performance in mIoU with fewer parameters on the UPLight (92.45(+0.32)%), ZJU (92.7(+0.1)%), and MCubeS (50.99(+1.51)%) datasets compared to the previous best methods. The code is available at https://github.com/LEFTeyex/ShareCMP.
Abstract:Survival prediction plays a crucial role in assisting clinicians with the development of cancer treatment protocols. Recent evidence shows that multimodal data can help in the diagnosis of cancer disease and improve survival prediction. Currently, deep learning-based approaches have experienced increasing success in survival prediction by integrating pathological images and gene expression data. However, most existing approaches overlook the intra-modality latent information and the complex inter-modality correlations. Furthermore, existing modalities do not fully exploit the immense representational capabilities of neural networks for feature aggregation and disregard the importance of relationships between features. Therefore, it is highly recommended to address these issues in order to enhance the prediction performance by proposing a novel deep learning-based method. We propose a novel framework named Two-stream Transformer-based Multimodal Fusion Network for survival prediction (TTMFN), which integrates pathological images and gene expression data. In TTMFN, we present a two-stream multimodal co-attention transformer module to take full advantage of the complex relationships between different modalities and the potential connections within the modalities. Additionally, we develop a multi-head attention pooling approach to effectively aggregate the feature representations of the two modalities. The experiment results on four datasets from The Cancer Genome Atlas demonstrate that TTMFN can achieve the best performance or competitive results compared to the state-of-the-art methods in predicting the overall survival of patients.
Abstract:Although single object trackers have achieved advanced performance, their large-scale models make it difficult to apply them on the platforms with limited resources. Moreover, existing lightweight trackers only achieve balance between 2-3 points in terms of parameters, performance, Flops and FPS. To achieve the optimal balance among these points, this paper propose a lightweight full-convolutional Siamese tracker called LightFC. LightFC employs a novel efficient cross-correlation module (ECM) and a novel efficient rep-center head (ERH) to enhance the nonlinear expressiveness of the convolutional tracking pipeline. The ECM employs an attention-like module design, which conducts spatial and channel linear fusion of fused features and enhances the nonlinearly of the fused features. Additionally, it references successful factors of current lightweight trackers and introduces skip-connections and reuse of search area features. The ERH reparameterizes the feature dimensional stage in the standard center head and introduces channel attention to optimize the bottleneck of key feature flows. Comprehensive experiments show that LightFC achieves the optimal balance between performance, parameters, Flops and FPS. The precision score of LightFC outperforms MixFormerV2-S by 3.7 \% and 6.5 \% on LaSOT and TNL2K, respectively, while using 5x fewer parameters and 4.6x fewer Flops. Besides, LightFC runs 2x faster than MixFormerV2-S on CPUs. Our code and raw results can be found at https://github.com/LiYunfengLYF/LightFC