Abstract:Personalized concept generation by tuning diffusion models with a few images raises potential legal and ethical concerns regarding privacy and intellectual property rights. Researchers attempt to prevent malicious personalization using adversarial perturbations. However, previous efforts have mainly focused on the effectiveness of protection while neglecting the visibility of perturbations. They utilize global adversarial perturbations, which introduce noticeable alterations to original images and significantly degrade visual quality. In this work, we propose the Visual-Friendly Concept Protection (VCPro) framework, which prioritizes the protection of key concepts chosen by the image owner through adversarial perturbations with lower perceptibility. To ensure these perturbations are as inconspicuous as possible, we introduce a relaxed optimization objective to identify the least perceptible yet effective adversarial perturbations, solved using the Lagrangian multiplier method. Qualitative and quantitative experiments validate that VCPro achieves a better trade-off between the visibility of perturbations and protection effectiveness, effectively prioritizing the protection of target concepts in images with less perceptible perturbations.
Abstract:As short-form video-sharing platforms become a significant channel for news consumption, fake news in short videos has emerged as a serious threat in the online information ecosystem, making developing detection methods for this new scenario an urgent need. Compared with that in text and image formats, fake news on short video platforms contains rich but heterogeneous information in various modalities, posing a challenge to effective feature utilization. Unlike existing works mostly focusing on analyzing what is presented, we introduce a novel perspective that considers how it might be created. Through the lens of the creative process behind news video production, our empirical analysis uncovers the unique characteristics of fake news videos in material selection and editing. Based on the obtained insights, we design FakingRecipe, a creative process-aware model for detecting fake news short videos. It captures the fake news preferences in material selection from sentimental and semantic aspects and considers the traits of material editing from spatial and temporal aspects. To improve evaluation comprehensiveness, we first construct FakeTT, an English dataset for this task, and conduct experiments on both FakeTT and the existing Chinese FakeSV dataset. The results show FakingRecipe's superiority in detecting fake news on short video platforms.
Abstract:Despite the impressive capabilities of generating images, text-to-image diffusion models are susceptible to producing undesirable outputs such as NSFW content and copyrighted artworks. To address this issue, recent studies have focused on fine-tuning model parameters to erase problematic concepts. However, existing methods exhibit a major flaw in robustness, as fine-tuned models often reproduce the undesirable outputs when faced with cleverly crafted prompts. This reveals a fundamental limitation in the current approaches and may raise risks for the deployment of diffusion models in the open world. To address this gap, we locate the concept-correlated neurons and find that these neurons show high sensitivity to adversarial prompts, thus could be deactivated when erasing and reactivated again under attacks. To improve the robustness, we introduce a new pruning-based strategy for concept erasing. Our method selectively prunes critical parameters associated with the concepts targeted for removal, thereby reducing the sensitivity of concept-related neurons. Our method can be easily integrated with existing concept-erasing techniques, offering a robust improvement against adversarial inputs. Experimental results show a significant enhancement in our model's ability to resist adversarial inputs, achieving nearly a 40% improvement in erasing the NSFW content and a 30% improvement in erasing artwork style.
Abstract:Fake news detection plays a crucial role in protecting social media users and maintaining a healthy news ecosystem. Among existing works, comment-based fake news detection methods are empirically shown as promising because comments could reflect users' opinions, stances, and emotions and deepen models' understanding of fake news. Unfortunately, due to exposure bias and users' different willingness to comment, it is not easy to obtain diverse comments in reality, especially for early detection scenarios. Without obtaining the comments from the ``silent'' users, the perceived opinions may be incomplete, subsequently affecting news veracity judgment. In this paper, we explore the possibility of finding an alternative source of comments to guarantee the availability of diverse comments, especially those from silent users. Specifically, we propose to adopt large language models (LLMs) as a user simulator and comment generator, and design GenFEND, a generated feedback-enhanced detection framework, which generates comments by prompting LLMs with diverse user profiles and aggregating generated comments from multiple subpopulation groups. Experiments demonstrate the effectiveness of GenFEND and further analysis shows that the generated comments cover more diverse users and could even be more effective than actual comments.
Abstract:Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
Abstract:Concept personalization methods enable large text-to-image models to learn specific subjects (e.g., objects/poses/3D models) and synthesize renditions in new contexts. Given that the image references are highly biased towards visual attributes, state-of-the-art personalization models tend to overfit the whole subject and cannot disentangle visual characteristics in pixel space. In this study, we proposed a more challenging setting, namely fine-grained visual appearance personalization. Different from existing methods, we allow users to provide a sentence describing the desired attributes. A novel decoupled self-augmentation strategy is proposed to generate target-related and non-target samples to learn user-specified visual attributes. These augmented data allow for refining the model's understanding of the target attribute while mitigating the impact of unrelated attributes. At the inference stage, adjustments are conducted on semantic space through the learned target and non-target embeddings to further enhance the disentanglement of target attributes. Extensive experiments on various kinds of visual attributes with SOTA personalization methods show the ability of the proposed method to mimic target visual appearance in novel contexts, thus improving the controllability and flexibility of personalization.
Abstract:Despite the remarkable process of talking-head-based avatar-creating solutions, directly generating anchor-style videos with full-body motions remains challenging. In this study, we propose Make-Your-Anchor, a novel system necessitating only a one-minute video clip of an individual for training, subsequently enabling the automatic generation of anchor-style videos with precise torso and hand movements. Specifically, we finetune a proposed structure-guided diffusion model on input video to render 3D mesh conditions into human appearances. We adopt a two-stage training strategy for the diffusion model, effectively binding movements with specific appearances. To produce arbitrary long temporal video, we extend the 2D U-Net in the frame-wise diffusion model to a 3D style without additional training cost, and a simple yet effective batch-overlapped temporal denoising module is proposed to bypass the constraints on video length during inference. Finally, a novel identity-specific face enhancement module is introduced to improve the visual quality of facial regions in the output videos. Comparative experiments demonstrate the effectiveness and superiority of the system in terms of visual quality, temporal coherence, and identity preservation, outperforming SOTA diffusion/non-diffusion methods. Project page: \url{https://github.com/ICTMCG/Make-Your-Anchor}.
Abstract:With the rapidly increasing application of large language models (LLMs), their abuse has caused many undesirable societal problems such as fake news, academic dishonesty, and information pollution. This makes AI-generated text (AIGT) detection of great importance. Among existing methods, white-box methods are generally superior to black-box methods in terms of performance and generalizability, but they require access to LLMs' internal states and are not applicable to black-box settings. In this paper, we propose to estimate word generation probabilities as pseudo white-box features via multiple re-sampling to help improve AIGT detection under the black-box setting. Specifically, we design POGER, a proxy-guided efficient re-sampling method, which selects a small subset of representative words (e.g., 10 words) for performing multiple re-sampling in black-box AIGT detection. Experiments on datasets containing texts from humans and seven LLMs show that POGER outperforms all baselines in macro F1 under black-box, partial white-box, and out-of-distribution settings and maintains lower re-sampling costs than its existing counterparts.
Abstract:As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
Abstract:Despite the effectiveness in improving the robustness of neural networks, adversarial training has suffered from the natural accuracy degradation problem, i.e., accuracy on natural samples has reduced significantly. In this study, we reveal that natural accuracy degradation is highly related to the disruption of the natural sample topology in the representation space by quantitative and qualitative experiments. Based on this observation, we propose Topology-pReserving Adversarial traINing (TRAIN) to alleviate the problem by preserving the topology structure of natural samples from a standard model trained only on natural samples during adversarial training. As an additional regularization, our method can easily be combined with various popular adversarial training algorithms in a plug-and-play manner, taking advantage of both sides. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet show that our proposed method achieves consistent and significant improvements over various strong baselines in most cases. Specifically, without additional data, our proposed method achieves up to 8.78% improvement in natural accuracy and 4.50% improvement in robust accuracy.