Abstract:Enhancing the safety of autonomous vehicles is crucial, especially given recent accidents involving automated systems. As passengers in these vehicles, humans' sensory perception and decision-making can be integrated with autonomous systems to improve safety. This study explores neural mechanisms in passenger-vehicle interactions, leading to the development of a Passenger Cognitive Model (PCM) and the Passenger EEG Decoding Strategy (PEDS). Central to PEDS is a novel Convolutional Recurrent Neural Network (CRNN) that captures spatial and temporal EEG data patterns. The CRNN, combined with stacking algorithms, achieves an accuracy of $85.0\% \pm 3.18\%$. Our findings highlight the predictive power of pre-event EEG data, enhancing the detection of hazardous scenarios and offering a network-driven framework for safer autonomous vehicles.
Abstract:The advent of deep learning (DL)-based models has significantly advanced Channel State Information (CSI) feedback mechanisms in wireless communication systems. However, traditional approaches often suffer from high communication overhead and potential privacy risks due to the centralized nature of CSI data processing. To address these challenges, we design a CSI feedback training framework called Dig-CSI, in which the dataset for training the CSI feedback model is produced by the distributed generators uploaded by each user equipment (UE), but not through local data upload. Each UE trains an autoencoder, where the decoder is considered as the distributed generator, with local data to gain reconstruction accuracy and the ability to generate. Experimental results show that Dig-CSI can train a global CSI feedback model with comparable performance to the model trained with classical centralized learning with a much lighter communication overhead.
Abstract:Deep learning has been widely applied for the channel state information (CSI) feedback in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. For the typical supervised training of the feedback model, the requirements of large amounts of task-specific labeled data can hardly be satisfied, and the huge training costs and storage usage of the model in multiple scenarios are hindrance for model application. In this letter, a multi-task learning-based approach is proposed to improve the feasibility of the feedback network. An encoder-shared feedback architecture and the corresponding training scheme are further proposed to facilitate the implementation of the multi-task learning approach. The experimental results indicate that the proposed multi-task learning approach can achieve comprehensive feedback performance with considerable reduction of training cost and storage usage of the feedback model.
Abstract:Deep learning (DL)-based channel state information (CSI) feedback improves the capacity and energy efficiency of massive multiple-input multiple-output (MIMO) systems in frequency division duplexing mode. However, multiple neural networks with different lengths of feedback overhead are required by time-varying bandwidth resources. The storage space required at the user equipment (UE) and the base station (BS) for these models increases linearly with the number of models. In this paper, we propose a DL-based changeable-rate framework with novel quantization scheme to improve the efficiency and feasibility of CSI feedback systems. This framework can reutilize all the network layers to achieve overhead-changeable CSI feedback to optimize the storage efficiency at the UE and the BS sides. Designed quantizer in this framework can avoid the normalization and gradient problems faced by traditional quantization schemes. Specifically, we propose two DL-based changeable-rate CSI feedback networks CH-CsiNetPro and CH-DualNetSph by introducing a feedback overhead control unit. Then, a pluggable quantization block (PQB) is developed to further improve the encoding efficiency of CSI feedback in an end-to-end way. Compared with existing CSI feedback methods, the proposed framework saves the storage space by about 50% with changeable-rate scheme and improves the encoding efficiency with the quantization module.
Abstract:Deep learning-based (DL-based) channel state information (CSI) feedback for a Massive multiple-input multiple-output (MIMO) system has proved to be a creative and efficient application. However, the existing systems ignored the wireless channel environment variation sensing, e.g., indoor and outdoor scenarios. Moreover, systems training requires excess pre-labeled CSI data, which is often unavailable. In this letter, to address these issues, we first exploit the rationality of introducing semi-supervised learning on CSI feedback, then one semi-supervised CSI sensing and feedback Network ($S^2$CsiNet) with three classifiers comparisons is proposed. Experiment shows that $S^2$CsiNet primarily improves the feasibility of the DL-based CSI feedback system by \textbf{\textit{indoor}} and \textbf{\textit{outdoor}} environment sensing and at most 96.2\% labeled dataset decreasing and secondarily boost the system performance by data distillation and latent information mining.