Abstract:The World Wide Web thrives on intelligent services that rely on accurate time series classification, which has recently witnessed significant progress driven by advances in deep learning. However, existing studies face challenges in domain incremental learning. In this paper, we propose a lightweight and robust dual-causal disentanglement framework (DualCD) to enhance the robustness of models under domain incremental scenarios, which can be seamlessly integrated into time series classification models. Specifically, DualCD first introduces a temporal feature disentanglement module to capture class-causal features and spurious features. The causal features can offer sufficient predictive power to support the classifier in domain incremental learning settings. To accurately capture these causal features, we further design a dual-causal intervention mechanism to eliminate the influence of both intra-class and inter-class confounding features. This mechanism constructs variant samples by combining the current class's causal features with intra-class spurious features and with causal features from other classes. The causal intervention loss encourages the model to accurately predict the labels of these variant samples based solely on the causal features. Extensive experiments on multiple datasets and models demonstrate that DualCD effectively improves performance in domain incremental scenarios. We summarize our rich experiments into a comprehensive benchmark to facilitate research in domain incremental time series classification.
Abstract:In the field of human-object interaction (HOI), detection and generation are two dual tasks that have traditionally been addressed separately, hindering the development of comprehensive interaction understanding. To address this, we propose UniHOI, which jointly models HOI detection and generation via a unified token space, thereby effectively promoting knowledge sharing and enhancing generalization. Specifically, we introduce a symmetric interaction-aware attention module and a unified semi-supervised learning paradigm, enabling effective bidirectional mapping between images and interaction semantics even under limited annotations. Extensive experiments demonstrate that UniHOI achieves state-of-the-art performance in both HOI detection and generation. Specifically, UniHOI improves accuracy by 4.9% on long-tailed HOI detection and boosts interaction metrics by 42.0% on open-vocabulary generation tasks.




Abstract:Compositional Zero-Shot Learning (CZSL) investigates compositional generalization capacity to recognize unknown state-object pairs based on learned primitive concepts. Existing CZSL methods typically derive primitives features through a simple composition-prototype mapping, which is suboptimal for a set of individuals that can be divided into distinct semantic subsets. Moreover, the all-to-one cross-modal primitives matching neglects compositional divergence within identical states or objects, limiting fine-grained image-composition alignment. In this study, we propose EVA, a Mixture-of-Experts Semantic Variant Alignment framework for CZSL. Specifically, we introduce domain-expert adaption, leveraging multiple experts to achieve token-aware learning and model high-quality primitive representations. To enable accurate compositional generalization, we further present semantic variant alignment to select semantically relevant representation for image-primitives matching. Our method significantly outperforms other state-of-the-art CZSL methods on three popular benchmarks in both closed- and open-world settings, demonstrating the efficacy of the proposed insight.
Abstract:While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.
Abstract:Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system. However, the scarcity of fMRI data and noise hamper brain decoding model performance. Previous approaches primarily employ subject-specific models, sensitive to training sample size. In this paper, we explore a straightforward but overlooked solution to address data scarcity. We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations. Subsequently, a shared deeper decoding model decodes cross-subject features into the target feature space. During training, we leverage both visual and textual supervision for multi-modal brain decoding. Our model integrates a high-level perception decoding pipeline and a pixel-wise reconstruction pipeline guided by high-level perceptions, simulating bottom-up and top-down processes in neuroscience. Empirical experiments demonstrate robust neural representation learning across subjects for both pipelines. Moreover, merging high-level and low-level information improves both low-level and high-level reconstruction metrics. Additionally, we successfully transfer learned general knowledge to new subjects by training new adapters with limited training data. Compared to previous state-of-the-art methods, notably pre-training-based methods (Mind-Vis and fMRI-PTE), our approach achieves comparable or superior results across diverse tasks, showing promise as an alternative method for cross-subject fMRI data pre-training. Our code and pre-trained weights will be publicly released at https://github.com/YulongBonjour/See_Through_Their_Minds.




Abstract:High-Definition (HD) maps play a crucial role in autonomous driving systems. Recent methods have attempted to construct HD maps in real-time based on information obtained from vehicle onboard sensors. However, the performance of these methods is significantly susceptible to the environment surrounding the vehicle due to the inherent limitation of onboard sensors, such as weak capacity for long-range detection. In this study, we demonstrate that supplementing onboard sensors with satellite maps can enhance the performance of HD map construction methods, leveraging the broad coverage capability of satellite maps. For the purpose of further research, we release the satellite map tiles as a complementary dataset of nuScenes dataset. Meanwhile, we propose a hierarchical fusion module that enables better fusion of satellite maps information with existing methods. Specifically, we design an attention mask based on segmentation and distance, applying the cross-attention mechanism to fuse onboard Bird's Eye View (BEV) features and satellite features in feature-level fusion. An alignment module is introduced before concatenation in BEV-level fusion to mitigate the impact of misalignment between the two features. The experimental results on the augmented nuScenes dataset showcase the seamless integration of our module into three existing HD map construction methods. It notably enhances their performance in both HD map semantic segmentation and instance detection tasks.