Abstract:To support future intelligent multifunctional sixth-generation (6G) wireless communication networks, Synesthesia of Machines (SoM) is proposed as a novel paradigm for artificial intelligence (AI)-native intelligent multi-modal sensing-communication integration. However, existing SoM system designs rely on task-specific AI models and face challenges such as scarcity of massive high-quality datasets, constrained modeling capability, poor generalization, and limited universality. Recently, foundation models (FMs) have emerged as a new deep learning paradigm and have been preliminarily applied to SoM-related tasks, but a systematic design framework is still lacking. In this paper, we for the first time present a systematic categorization of FMs for SoM system design, dividing them into general-purpose FMs, specifically large language models (LLMs), and SoM domain-specific FMs, referred to as wireless foundation models. Furthermore, we derive key characteristics of FMs in addressing existing challenges in SoM systems and propose two corresponding roadmaps, i.e., LLM-based and wireless foundation model-based design. For each roadmap, we provide a framework containing key design steps as a guiding pipeline and several representative case studies of FM-empowered SoM system design. Specifically, we propose LLM-based path loss generation (LLM4PG) and scatterer generation (LLM4SG) schemes, and wireless channel foundation model (WiCo) for SoM mechanism exploration, LLM-based wireless multi-task SoM transceiver (LLM4WM) and wireless foundation model (WiFo) for SoM-enhanced transceiver design, and wireless cooperative perception foundation model (WiPo) for SoM-enhanced cooperative perception, demonstrating the significant superiority of FMs over task-specific models. Finally, we summarize and highlight potential directions for future research.
Abstract:This paper investigates a heterogeneous multi-vehicle, multi-modal sensing (H-MVMM) aided online precoding problem. The proposed H-MVMM scheme utilizes a vertical federated learning (VFL) framework to minimize pilot sequence length and optimize the sum rate. This offers a promising solution for reducing latency in frequency division duplexing systems. To achieve this, three preprocessing modules are designed to transform raw sensory data into informative representations relevant to precoding. The approach effectively addresses local data heterogeneity arising from diverse on-board sensor configurations through a well-structured VFL training procedure. Additionally, a label-free online model updating strategy is introduced, enabling the H-MVMM scheme to adapt its weights flexibly. This strategy features a pseudo downlink channel state information label simulator (PCSI-Simulator), which is trained using a semi-supervised learning (SSL) approach alongside an online loss function. Numerical results show that the proposed method can closely approximate the performance of traditional optimization techniques with perfect channel state information, achieving a significant 90.6\% reduction in pilot sequence length.
Abstract:Guided by Synesthesia of Machines (SoM), the nonlinear mapping relationship between sensory and communication information serves as a powerful tool to enhance both the accuracy and generalization of vehicle-to-vehicle (V2V) multi-modal intelligent channel modeling (MMICM) in intelligent transportation systems (ITSs). To explore the general mapping relationship between physical environment and electromagnetic space, a new intelligent sensing-communication integration dataset, named V2V-M3, is constructed for multiple scenarios in V2V communications with multiple frequency bands and multiple vehicular traffic densities (VTDs). Leveraging the strong representation and cross-modal inference capabilities of large language models (LLMs), a novel LLM-based method for Scatterer Prediction (LLM4SP) from light detection and ranging (LiDAR) point clouds is developed. To address the inherent and significant differences across multi-modal data, synergistically optimized four-module architecture, i.e., preprocessor, embedding, backbone, and output modules, are designed by considering the sensing/channel characteristics and electromagnetic propagation mechanism. On the basis of cross-modal representation alignment and positional encoding, the network of LLM4SP is fine-tuned to capture the general mapping relationship between LiDAR point clouds and scatterers. Simulation results demonstrate that the proposed LLM4SP achieves superior performance in full-sample and generalization testing, significantly outperforming small models across different frequency bands, scenarios, and VTDs.
Abstract:Protein-protein interactions (PPIs) are fundamental for deciphering cellular functions,disease pathways,and drug discovery.Although existing neural networks and machine learning methods have achieved high accuracy in PPI prediction,their black-box nature leads to a lack of causal interpretation of the prediction results and difficulty in capturing hierarchical geometries and multi-scale dynamic interaction patterns among proteins.To address these challenges, we propose HyboWaveNet,a novel deep learning framework that collaborates with hyperbolic graphical neural networks (HGNNs) and multiscale graphical wavelet transform for robust PPI prediction. Mapping protein features to Lorentz space simulates hierarchical topological relationships among biomolecules via a hyperbolic distance metric,enabling node feature representations that better fit biological a priori.HyboWaveNet inherently simulates hierarchical and scale-free biological relationships, while the integration of wavelet transforms enables adaptive extraction of local and global interaction features across different resolutions. Our framework generates node feature representations via a graph neural network under the Lorenz model and generates pairs of positive samples under multiple different views for comparative learning, followed by further feature extraction via multi-scale graph wavelet transforms to predict potential PPIs. Experiments on public datasets show that HyboWaveNet improves over both existing state-of-the-art methods. We also demonstrate through ablation experimental studies that the multi-scale graph wavelet transform module improves the predictive performance and generalization ability of HyboWaveNet. This work links geometric deep learning and signal processing to advance PPI prediction, providing a principled approach for analyzing complex biological systems
Abstract:Drug-target interaction (DTI) prediction is a core task in drug development and precision medicine in the biomedical field. However, traditional machine learning methods generally have the black box problem, which makes it difficult to reveal the deep correlation between the model decision mechanism and the interaction pattern between biological molecules. This study proposes a heterogeneous network drug target interaction prediction framework, integrating graph neural network and multi scale signal processing technology to construct a model with both efficient prediction and multi level interpretability. Its technical breakthroughs are mainly reflected in the following three dimensions:Local global feature collaborative perception module. Based on heterogeneous graph convolutional neural network (HGCN), a multi order neighbor aggregation strategy is designed.Multi scale graph signal decomposition and biological interpretation module. A deep hierarchical node feature transform (GWT) architecture is proposed.Contrastive learning combining multi dimensional perspectives and hierarchical representations. By comparing the learning models, the node representations from the two perspectives of HGCN and GWT are aligned and fused, so that the model can integrate multi dimensional information and improve the prediction robustness. Experimental results show that our framework shows excellent prediction performance on all datasets. This study provides a complete solution for drug target discovery from black box prediction to mechanism decoding, and its methodology has important reference value for modeling complex biomolecular interaction systems.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has emerged as a critical technique for training large language models. However, reward hacking-a phenomenon where models exploit flaws in the reward model-remains a significant barrier to achieving robust and scalable intelligence through long-term training. Existing studies have proposed uncertain reward model to address reward hacking, however, they often lack systematic or theoretical foundations, failing to model the uncertainty intrinsically emerging from preference data. In this paper, we propose the Probabilistic Uncertain Reward Model (PURM), a natural generalization of the classical Bradley-Terry reward model. PURM learns reward distributions directly from preference data and quantifies per-sample uncertainty via the average overlap area between reward distributions. To mitigate reward hacking, we further introduce an uncertainty-aware penalty into Proximal Policy Optimization (PPO), which leverages the learned uncertainty to dynamically balance reward optimization and exploration. We propose a lightweight and easy-to-use implementation of PURM. Experiments demonstrate that PURM significantly delays the onset of reward hacking while improving final reward performance, outperforming baseline methods in both stability and effectiveness.
Abstract:High complexity in precoding design for frequency division duplex systems necessitates streamlined solutions. Guided by Synesthesia of Machines (SoM), this paper introduces a heterogeneous multi-vehicle, multi-modal sensing aided precoding scheme within a vertical federated learning (VFL) framework, which significantly minimizes pilot sequence length while optimizing the system's sum rate. We address the challenges posed by local data heterogeneity due to varying on-board sensor configurations through a meticulously designed VFL training procedure. To extract valuable channel features from multi-modal sensing, we employ three distinct data preprocessing methods that convert raw data into informative representations relevant for precoding. Additionally, we propose an online training strategy based on VFL framework, enabling the scheme to adapt dynamically to fluctuations in user numbers. Numerical results indicate that our approach, utilizing short pilot sequences, closely approximates the performance of traditional optimization methods with perfect channel state information.
Abstract:In this paper, a novel multi-modal intelligent channel model for sixth-generation (6G) multiple-unmanned aerial vehicle (multi-UAV)-to-multi-vehicle communications is proposed. To thoroughly explore the mapping relationship between the physical environment and the electromagnetic space in the complex multi-UAV-to-multi-vehicle scenario, two new parameters, i.e., terrestrial traffic density (TTD) and aerial traffic density (ATD), are developed and a new sensing-communication intelligent integrated dataset is constructed in suburban scenario under different TTD and ATD conditions. With the aid of sensing data, i.e., light detection and ranging (LiDAR) point clouds, the parameters of static scatterers, terrestrial dynamic scatterers, and aerial dynamic scatterers in the electromagnetic space, e.g., number, distance, angle, and power, are quantified under different TTD and ATD conditions in the physical environment. In the proposed model, the channel non-stationarity and consistency on the time and space domains and the channel non-stationarity on the frequency domain are simultaneously mimicked. The channel statistical properties, such as time-space-frequency correlation function (TSF-CF), time stationary interval (TSI), and Doppler power spectral density (DPSD), are derived and simulated. Simulation results match ray-tracing (RT) results well, which verifies the accuracy of the proposed multi-UAV-to-multi-vehicle channel model.
Abstract:This paper proposes a novel sixth-generation (6G) multi-modal intelligent vehicle-to-vehicle (V2V) channel model from light detection and ranging (LiDAR) point clouds based on Synesthesia of Machines (SoM). To explore the mapping relationship between physical environment and electromagnetic space, a new V2V high-fidelity mixed sensing-communication integration simulation dataset with different vehicular traffic densities (VTDs) is constructed. Based on the constructed dataset, a novel scatterer recognition (ScaR) algorithm utilizing neural network SegNet is developed to recognize scatterer spatial attributes from LiDAR point clouds via SoM. In the developed ScaR algorithm, the mapping relationship between LiDAR point clouds and scatterers is explored, where the distribution of scatterers is obtained in the form of grid maps. Furthermore, scatterers are distinguished into dynamic and static scatterers based on LiDAR point cloud features, where parameters, e.g., distance, angle, and number, related to scatterers are determined. Through ScaR, dynamic and static scatterers change with the variation of LiDAR point clouds over time, which precisely models channel non-stationarity and consistency under different VTDs. Some important channel statistical properties, such as time-frequency correlation function (TF-CF) and Doppler power spectral density (DPSD), are obtained. Simulation results match well with ray-tracing (RT)-based results, thus demonstrating the necessity of exploring the mapping relationship and the utility of the proposed model.
Abstract:Given the importance of datasets for sensing-communication integration research, a novel simulation platform for constructing communication and multi-modal sensory dataset is developed. The developed platform integrates three high-precision software, i.e., AirSim, WaveFarer, and Wireless InSite, and further achieves in-depth integration and precise alignment of them. Based on the developed platform, a new synthetic intelligent multi-modal sensing-communication dataset for Synesthesia of Machines (SoM), named SynthSoM, is proposed. The SynthSoM dataset contains various air-ground multi-link cooperative scenarios with comprehensive conditions, including multiple weather conditions, times of the day, intelligent agent densities, frequency bands, and antenna types. The SynthSoM dataset encompasses multiple data modalities, including radio-frequency (RF) channel large-scale and small-scale fading data, RF millimeter wave (mmWave) radar sensory data, and non-RF sensory data, e.g., RGB images, depth maps, and light detection and ranging (LiDAR) point clouds. The quality of SynthSoM dataset is validated via statistics-based qualitative inspection and evaluation metrics through machine learning (ML) via real-world measurements. The SynthSoM dataset is open-sourced and provides consistent data for cross-comparing SoM-related algorithms.