Abstract:Synthesizing semantic-aware, long-horizon, human-object interaction is critical to simulate realistic human behaviors. In this work, we address the challenging problem of generating synchronized object motion and human motion guided by language descriptions in 3D scenes. We propose Controllable Human-Object Interaction Synthesis (CHOIS), an approach that generates object motion and human motion simultaneously using a conditional diffusion model given a language description, initial object and human states, and sparse object waypoints. While language descriptions inform style and intent, waypoints ground the motion in the scene and can be effectively extracted using high-level planning methods. Naively applying a diffusion model fails to predict object motion aligned with the input waypoints and cannot ensure the realism of interactions that require precise hand-object contact and appropriate contact grounded by the floor. To overcome these problems, we introduce an object geometry loss as additional supervision to improve the matching between generated object motion and input object waypoints. In addition, we design guidance terms to enforce contact constraints during the sampling process of the trained diffusion model.
Abstract:We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot's ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.
Abstract:We introduce a method to synthesize animator guided human motion across 3D scenes. Given a set of sparse (3 or 4) joint locations (such as the location of a person's hand and two feet) and a seed motion sequence in a 3D scene, our method generates a plausible motion sequence starting from the seed motion while satisfying the constraints imposed by the provided keypoints. We decompose the continual motion synthesis problem into walking along paths and transitioning in and out of the actions specified by the keypoints, which enables long generation of motions that satisfy scene constraints without explicitly incorporating scene information. Our method is trained only using scene agnostic mocap data. As a result, our approach is deployable across 3D scenes with various geometries. For achieving plausible continual motion synthesis without drift, our key contribution is to generate motion in a goal-centric canonical coordinate frame where the next immediate target is situated at the origin. Our model can generate long sequences of diverse actions such as grabbing, sitting and leaning chained together in arbitrary order, demonstrated on scenes of varying geometry: HPS, Replica, Matterport, ScanNet and scenes represented using NeRFs. Several experiments demonstrate that our method outperforms existing methods that navigate paths in 3D scenes.
Abstract:In this work, we study how to build socially intelligent robots to assist people in their homes. In particular, we focus on assistance with online goal inference, where robots must simultaneously infer humans' goals and how to help them achieve those goals. Prior assistance methods either lack the adaptivity to adjust helping strategies (i.e., when and how to help) in response to uncertainty about goals or the scalability to conduct fast inference in a large goal space. Our NOPA (Neurally-guided Online Probabilistic Assistance) method addresses both of these challenges. NOPA consists of (1) an online goal inference module combining neural goal proposals with inverse planning and particle filtering for robust inference under uncertainty, and (2) a helping planner that discovers valuable subgoals to help with and is aware of the uncertainty in goal inference. We compare NOPA against multiple baselines in a new embodied AI assistance challenge: Online Watch-And-Help, in which a helper agent needs to simultaneously watch a main agent's action, infer its goal, and help perform a common household task faster in realistic virtual home environments. Experiments show that our helper agent robustly updates its goal inference and adapts its helping plans to the changing level of uncertainty.
Abstract:Language model (LM) pre-training has proven useful for a wide variety of language processing tasks, but can such pre-training be leveraged for more general machine learning problems? We investigate the effectiveness of language modeling to scaffold learning and generalization in autonomous decision-making. We describe a framework for imitation learning in which goals and observations are represented as a sequence of embeddings, and translated into actions using a policy network initialized with a pre-trained transformer LM. We demonstrate that this framework enables effective combinatorial generalization across different environments, such as VirtualHome and BabyAI. In particular, for test tasks involving novel goals or novel scenes, initializing policies with language models improves task completion rates by 43.6% in VirtualHome. We hypothesize and investigate three possible factors underlying the effectiveness of LM-based policy initialization. We find that sequential representations (vs. fixed-dimensional feature vectors) and the LM objective (not just the transformer architecture) are both important for generalization. Surprisingly, however, the format of the policy inputs encoding (e.g. as a natural language string vs. an arbitrary sequential encoding) has little influence. Together, these results suggest that language modeling induces representations that are useful for modeling not just language, but also goals and plans; these representations can aid learning and generalization even outside of language processing.
Abstract:Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: https://ali-design.github.io/GenRep/
Abstract:In this paper, we introduce Watch-And-Help (WAH), a challenge for testing social intelligence in agents. In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently. To succeed, the AI agent needs to i) understand the underlying goal of the task by watching a single demonstration of the human-like agent performing the same task (social perception), and ii) coordinate with the human-like agent to solve the task in an unseen environment as fast as possible (human-AI collaboration). For this challenge, we build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines. We evaluate the performance of AI agents with the human-like agent as well as with real humans using objective metrics and subjective user ratings. Experimental results demonstrate that the proposed challenge and virtual environment enable a systematic evaluation on the important aspects of machine social intelligence at scale.
Abstract:Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the community's efforts in data collection, there are still few image datasets covering a wide range of scenes and object categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A generic network design called Cascade Segmentation Module is then proposed to enable the segmentation networks to parse a scene into stuff, objects, and object parts in a cascade. We evaluate the proposed module integrated within two existing semantic segmentation networks, yielding significant improvements for scene parsing. We further show that the scene parsing networks trained on ADE20K can be applied to a wide variety of scenes and objects.
Abstract:In this paper, we are interested in modeling complex activities that occur in a typical household. We propose to use programs, i.e., sequences of atomic actions and interactions, as a high level representation of complex tasks. Programs are interesting because they provide a non-ambiguous representation of a task, and allow agents to execute them. However, nowadays, there is no database providing this type of information. Towards this goal, we first crowd-source programs for a variety of activities that happen in people's homes, via a game-like interface used for teaching kids how to code. Using the collected dataset, we show how we can learn to extract programs directly from natural language descriptions or from videos. We then implement the most common atomic (inter)actions in the Unity3D game engine, and use our programs to "drive" an artificial agent to execute tasks in a simulated household environment. Our VirtualHome simulator allows us to create a large activity video dataset with rich ground-truth, enabling training and testing of video understanding models. We further showcase examples of our agent performing tasks in our VirtualHome based on language descriptions.
Abstract:Recognizing arbitrary objects in the wild has been a challenging problem due to the limitations of existing classification models and datasets. In this paper, we propose a new task that aims at parsing scenes with a large and open vocabulary, and several evaluation metrics are explored for this problem. Our proposed approach to this problem is a joint image pixel and word concept embeddings framework, where word concepts are connected by semantic relations. We validate the open vocabulary prediction ability of our framework on ADE20K dataset which covers a wide variety of scenes and objects. We further explore the trained joint embedding space to show its interpretability.