Abstract:When a vision model performs image recognition, which visual attributes drive its predictions? Detecting unintended reliance on specific visual features is critical for ensuring model robustness, preventing overfitting, and avoiding spurious correlations. We introduce an automated framework for detecting such dependencies in trained vision models. At the core of our method is a self-reflective agent that systematically generates and tests hypotheses about visual attributes that a model may rely on. This process is iterative: the agent refines its hypotheses based on experimental outcomes and uses a self-evaluation protocol to assess whether its findings accurately explain model behavior. When inconsistencies arise, the agent self-reflects over its findings and triggers a new cycle of experimentation. We evaluate our approach on a novel benchmark of 130 models designed to exhibit diverse visual attribute dependencies across 18 categories. Our results show that the agent's performance consistently improves with self-reflection, with a significant performance increase over non-reflective baselines. We further demonstrate that the agent identifies real-world visual attribute dependencies in state-of-the-art models, including CLIP's vision encoder and the YOLOv8 object detector.
Abstract:As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public
Abstract:When language models (LMs) are trained via reinforcement learning (RL) to generate natural language "reasoning chains", their performance improves on a variety of difficult question answering tasks. Today, almost all successful applications of RL for reasoning use binary reward functions that evaluate the correctness of LM outputs. Because such reward functions do not penalize guessing or low-confidence outputs, they often have the unintended side-effect of degrading calibration and increasing the rate at which LMs generate incorrect responses (or "hallucinate") in other problem domains. This paper describes RLCR (Reinforcement Learning with Calibration Rewards), an approach to training reasoning models that jointly improves accuracy and calibrated confidence estimation. During RLCR, LMs generate both predictions and numerical confidence estimates after reasoning. They are trained to optimize a reward function that augments a binary correctness score with a Brier score -- a scoring rule for confidence estimates that incentivizes calibrated prediction. We first prove that this reward function (or any analogous reward function that uses a bounded, proper scoring rule) yields models whose predictions are both accurate and well-calibrated. We next show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy, on both in-domain and out-of-domain evaluations -- outperforming both ordinary RL training and classifiers trained to assign post-hoc confidence scores. While ordinary RL hurts calibration, RLCR improves it. Finally, we demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration via confidence-weighted scaling methods. Our results show that explicitly optimizing for calibration can produce more generally reliable reasoning models.
Abstract:We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
Abstract:There are two primary ways of incorporating new information into a language model (LM): changing its prompt or changing its parameters, e.g. via fine-tuning. Parameter updates incur no long-term storage cost for model changes. However, for many model updates, prompting is significantly more effective: prompted models can generalize robustly from single examples and draw logical inferences that do not occur under standard fine-tuning. Can models be modified so that fine-tuning does emulate prompting? This paper describes a method for meta-training LMs such that gradient updates emulate the effects of conditioning on new information. Our approach uses tools from gradient-based meta-learning but uses an LM's own prompted predictions as targets, eliminating the need for ground-truth labels. Subsequent gradient descent training recovers some (and occasionally all) of prompted model performance -- showing improvement on the ``reversal curse'' tasks, and answering questions about text passages after a single gradient update. These results suggest that, with appropriate initialization, gradient descent can be surprisingly expressive. Our results suggest new avenues for long-context modeling and offer insight into the generalization capabilities of gradient-based learning.
Abstract:Modern neural sequence models are designed to meet the dual mandate of parallelizable training and fast sequential inference. Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba, that achieve such ``sequential-parallel duality.'' This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference? We begin by describing a broad class of such models -- state space models -- as those whose state updates can be computed using the classic parallel prefix scan algorithm with a custom associative aggregation operator. We then define a more general class, Prefix-Scannable Models (PSMs), by relaxing the state aggregation operator to allow arbitrary (potentially non-associative) functions such as softmax attention. This generalization unifies many existing architectures, including element-wise RNNs (e.g., Mamba) and linear transformers (e.g., GLA, Mamba2, mLSTM), while also introducing new models with softmax-like operators that achieve O(1) amortized compute per token and log(N) memory for sequence length N. We empirically evaluate such models on illustrative small-scale language modeling and canonical synthetic tasks, including state tracking and associative recall. Empirically, we find that PSMs retain the expressivity of transformer-based architectures while matching the inference efficiency of state space models -- in some cases exhibiting better length generalization than either.
Abstract:Language models can be equipped with multimodal capabilities by fine-tuning on embeddings of visual inputs. But how do such multimodal models represent images in their hidden activations? We explore representations of image concepts within LlaVA-Next, a popular open-source VLLM. We find a diverse set of ImageNet classes represented via linearly decodable features in the residual stream. We show that the features are causal by performing targeted edits on the model output. In order to increase the diversity of the studied linear features, we train multimodal Sparse Autoencoders (SAEs), creating a highly interpretable dictionary of text and image features. We find that although model representations across modalities are quite disjoint, they become increasingly shared in deeper layers.
Abstract:While humans naturally learn and adapt from past experiences, large language models (LLMs) and their agentic counterparts struggle to retain reasoning from previous tasks and apply them in future contexts. To address this limitation, we propose a novel framework, log-augmented generation (LAG) that directly reuses prior computation and reasoning from past logs at test time to enhance model's ability to learn from previous tasks and perform better on new, unseen challenges, all while keeping the system efficient and scalable. Specifically, our system represents task logs using key-value (KV) caches, encoding the full reasoning context of prior tasks while storing KV caches for only a selected subset of tokens. When a new task arises, LAG retrieves the KV values from relevant logs to augment generation. Our approach differs from reflection-based memory mechanisms by directly reusing prior reasoning and computations without requiring additional steps for knowledge extraction or distillation. Our method also goes beyond existing KV caching techniques, which primarily target efficiency gains rather than improving accuracy. Experiments on knowledge- and reasoning-intensive datasets demonstrate that our method significantly outperforms standard agentic systems that do not utilize logs, as well as existing solutions based on reflection and KV cache techniques.
Abstract:While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.




Abstract:We present ThinkPrune, a simple yet effective method for pruning the thinking length for long-thinking LLMs, which has been found to often produce inefficient and redundant thinking processes. Existing preliminary explorations of reducing thinking length primarily focus on forcing the thinking process to early exit, rather than adapting the LLM to optimize and consolidate the thinking process, and therefore the length-performance tradeoff observed so far is sub-optimal. To fill this gap, ThinkPrune offers a simple solution that continuously trains the long-thinking LLMs via reinforcement learning (RL) with an added token limit, beyond which any unfinished thoughts and answers will be discarded, resulting in a zero reward. To further preserve model performance, we introduce an iterative length pruning approach, where multiple rounds of RL are conducted, each with an increasingly more stringent token limit. We observed that ThinkPrune results in a remarkable performance-length tradeoff -- on the AIME24 dataset, the reasoning length of DeepSeek-R1-Distill-Qwen-1.5B can be reduced by half with only 2% drop in performance. We also observed that after pruning, the LLMs can bypass unnecessary steps while keeping the core reasoning process complete. Code is available at https://github.com/UCSB-NLP-Chang/ThinkPrune.