Alibaba Group, University of Oxford
Abstract:Learning 3D representations by fusing point cloud and multi-view data has been proven to be fairly effective. While prior works typically focus on exploiting global features of the two modalities, in this paper we argue that more discriminative features can be derived by modeling "where to fuse". To investigate this, we propose a novel Correspondence-Aware Point-view Fusion Net (CAPNet). The core element of CAP-Net is a module named Correspondence-Aware Fusion (CAF) which integrates the local features of the two modalities based on their correspondence scores. We further propose to filter out correspondence scores with low values to obtain salient local correspondences, which reduces redundancy for the fusion process. In our CAP-Net, we utilize the CAF modules to fuse the multi-scale features of the two modalities both bidirectionally and hierarchically in order to obtain more informative features. Comprehensive evaluations on popular 3D shape benchmarks covering 3D object classification and retrieval show the superiority of the proposed framework.
Abstract:This paper presents a neural network built upon Transformers, namely PlaneTR, to simultaneously detect and reconstruct planes from a single image. Different from previous methods, PlaneTR jointly leverages the context information and the geometric structures in a sequence-to-sequence way to holistically detect plane instances in one forward pass. Specifically, we represent the geometric structures as line segments and conduct the network with three main components: (i) context and line segments encoders, (ii) a structure-guided plane decoder, (iii) a pixel-wise plane embedding decoder. Given an image and its detected line segments, PlaneTR generates the context and line segment sequences via two specially designed encoders and then feeds them into a Transformers-based decoder to directly predict a sequence of plane instances by simultaneously considering the context and global structure cues. Finally, the pixel-wise embeddings are computed to assign each pixel to one predicted plane instance which is nearest to it in embedding space. Comprehensive experiments demonstrate that PlaneTR achieves a state-of-the-art performance on the ScanNet and NYUv2 datasets.
Abstract:Temporal action detection (TAD) aims to determine the semantic label and the boundaries of every action instance in an untrimmed video. It is a fundamental and challenging task in video understanding and significant progress has been made. Previous methods involve multiple stages or networks and hand-designed rules or operations, which fall short in efficiency and flexibility. In this paper, we propose an end-to-end framework for TAD upon Transformer, termed \textit{TadTR}, which maps a set of learnable embeddings to action instances in parallel. TadTR is able to adaptively extract temporal context information required for making action predictions, by selectively attending to a sparse set of snippets in a video. As a result, it simplifies the pipeline of TAD and requires lower computation cost than previous detectors, while preserving remarkable detection performance. TadTR achieves state-of-the-art performance on HACS Segments (+3.35% average mAP). As a single-network detector, TadTR runs 10$\times$ faster than its comparable competitor. It outperforms existing single-network detectors by a large margin on THUMOS14 (+5.0% average mAP) and ActivityNet (+7.53% average mAP). When combined with other detectors, it reports 54.1% mAP at IoU=0.5 on THUMOS14, and 34.55% average mAP on ActivityNet-1.3. Our code will be released at \url{https://github.com/xlliu7/TadTR}.
Abstract:Human vision is able to capture the part-whole hierarchical information from the entire scene. This paper presents the Visual Parser (ViP) that explicitly constructs such a hierarchy with transformers. ViP divides visual representations into two levels, the part level and the whole level. Information of each part represents a combination of several independent vectors within the whole. To model the representations of the two levels, we first encode the information from the whole into part vectors through an attention mechanism, then decode the global information within the part vectors back into the whole representation. By iteratively parsing the two levels with the proposed encoder-decoder interaction, the model can gradually refine the features on both levels. Experimental results demonstrate that ViP can achieve very competitive performance on three major tasks e.g. classification, detection and instance segmentation. In particular, it can surpass the previous state-of-the-art CNN backbones by a large margin on object detection. The tiny model of the ViP family with $7.2\times$ fewer parameters and $10.9\times$ fewer FLOPS can perform comparably with the largest model ResNeXt-101-64$\times$4d of ResNe(X)t family. Visualization results also demonstrate that the learnt parts are highly informative of the predicting class, making ViP more explainable than previous fundamental architectures. Code is available at https://github.com/kevin-ssy/ViP.
Abstract:Leveraging the advances of natural language processing, most recent scene text recognizers adopt an encoder-decoder architecture where text images are first converted to representative features and then a sequence of characters via `direct decoding'. However, scene text images suffer from rich noises of different sources such as complex background and geometric distortions which often confuse the decoder and lead to incorrect alignment of visual features at noisy decoding time steps. This paper presents I2C2W, a novel scene text recognizer that is accurate and tolerant to various noises in scenes. I2C2W consists of an image-to-character module (I2C) and a character-to-word module (C2W) which are complementary and can be trained end-to-end. I2C detects characters and predicts their relative positions in a word. It strives to detect all possible characters including incorrect and redundant ones based on different alignments of visual features without the restriction of time steps. Taking the detected characters as input, C2W learns from character semantics and their positions to filter out incorrect and redundant detection and produce the final word recognition. Extensive experiments over seven public datasets show that I2C2W achieves superior recognition performances and outperforms the state-of-the-art by large margins on challenging irregular scene text datasets.
Abstract:Object detection, instance segmentation, and pose estimation are popular visual recognition tasks which require localizing the object by internal or boundary landmarks. This paper summarizes these tasks as location-sensitive visual recognition and proposes a unified solution named location-sensitive network (LSNet). Based on a deep neural network as the backbone, LSNet predicts an anchor point and a set of landmarks which together define the shape of the target object. The key to optimizing the LSNet lies in the ability of fitting various scales, for which we design a novel loss function named cross-IOU loss that computes the cross-IOU of each anchor point-landmark pair to approximate the global IOU between the prediction and ground-truth. The flexibly located and accurately predicted landmarks also enable LSNet to incorporate richer contextual information for visual recognition. Evaluated on the MS-COCO dataset, LSNet set the new state-of-the-art accuracy for anchor-free object detection (a 53.5% box AP) and instance segmentation (a 40.2% mask AP), and shows promising performance in detecting multi-scale human poses. Code is available at https://github.com/Duankaiwen/LSNet
Abstract:Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage detectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a "re-id first" principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
Abstract:In this work we present SwiftNet for real-time semi-supervised video object segmentation (one-shot VOS), which reports 77.8% J&F and 70 FPS on DAVIS 2017 validation dataset, leading all present solutions in overall accuracy and speed performance. We achieve this by elaborately compressing spatiotemporal redundancy in matching-based VOS via Pixel-Adaptive Memory (PAM). Temporally, PAM adaptively triggers memory updates on frames where objects display noteworthy inter-frame variations. Spatially, PAM selectively performs memory update and match on dynamic pixels while ignoring the static ones, significantly reducing redundant computations wasted on segmentation-irrelevant pixels. To promote efficient reference encoding, light-aggregation encoder is also introduced in SwiftNet deploying reversed sub-pixel. We hope SwiftNet could set a strong and efficient baseline for real-time VOS and facilitate its application in mobile vision.
Abstract:Can our video understanding systems perceive objects when a heavy occlusion exists in a scene? To answer this question, we collect a large scale dataset called OVIS for occluded video instance segmentation, that is, to simultaneously detect, segment, and track instances in occluded scenes. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems are not satisfying. On the OVIS dataset, the highest AP achieved by state-of-the-art algorithms is only 14.4, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario. Moreover, to complement missing object cues caused by occlusion, we propose a plug-and-play module called temporal feature calibration. Built upon MaskTrack R-CNN and SipMask, we report an AP of 15.2 and 15.0 respectively. The OVIS dataset is released at http://songbai.site/ovis , and the project code will be available soon.
Abstract:Current developments in temporal event or action localization usually target actions captured by a single camera. However, extensive events or actions in the wild may be captured as a sequence of shots by multiple cameras at different positions. In this paper, we propose a new and challenging task called multi-shot temporal event localization, and accordingly, collect a large scale dataset called MUlti-Shot EventS (MUSES). MUSES has 31,477 event instances for a total of 716 video hours. The core nature of MUSES is the frequent shot cuts, for an average of 19 shots per instance and 176 shots per video, which induces large intrainstance variations. Our comprehensive evaluations show that the state-of-the-art method in temporal action localization only achieves an mAP of 13.1% at IoU=0.5. As a minor contribution, we present a simple baseline approach for handling the intra-instance variations, which reports an mAP of 18.9% on MUSES and 56.9% on THUMOS14 at IoU=0.5. To facilitate research in this direction, we release the dataset and the project code at https://songbai.site/muses.