New York University
Abstract:Retrieval-augmented generation (RAG) is a framework enabling large language models (LLMs) to enhance their accuracy and reduce hallucinations by integrating external knowledge bases. In this paper, we introduce a hybrid RAG system enhanced through a comprehensive suite of optimizations that significantly improve retrieval quality, augment reasoning capabilities, and refine numerical computation ability. We refined the text chunks and tables in web pages, added attribute predictors to reduce hallucinations, conducted LLM Knowledge Extractor and Knowledge Graph Extractor, and finally built a reasoning strategy with all the references. We evaluated our system on the CRAG dataset through the Meta CRAG KDD Cup 2024 Competition. Both the local and online evaluations demonstrate that our system significantly enhances complex reasoning capabilities. In local evaluations, we have significantly improved accuracy and reduced error rates compared to the baseline model, achieving a notable increase in scores. In the meanwhile, we have attained outstanding results in online assessments, demonstrating the performance and generalization capabilities of the proposed system. The source code for our system is released in \url{https://gitlab.aicrowd.com/shizueyy/crag-new}.
Abstract:Binary Neural Networks~(BNNs) have been proven to be highly effective for deploying deep neural networks on mobile and embedded platforms. Most existing works focus on minimizing quantization errors, improving representation ability, or designing gradient approximations to alleviate gradient mismatch in BNNs, while leaving the weight sign flipping, a critical factor for achieving powerful BNNs, untouched. In this paper, we investigate the efficiency of weight sign updates in BNNs. We observe that, for vanilla BNNs, over 50\% of the weights remain their signs unchanged during training, and these weights are not only distributed at the tails of the weight distribution but also universally present in the vicinity of zero. We refer to these weights as ``silent weights'', which slow down convergence and lead to a significant accuracy degradation. Theoretically, we reveal this is due to the independence of the BNNs gradient from the latent weight distribution. To address the issue, we propose Overcome Silent Weights~(OvSW). OvSW first employs Adaptive Gradient Scaling~(AGS) to establish a relationship between the gradient and the latent weight distribution, thereby improving the overall efficiency of weight sign updates. Additionally, we design Silence Awareness Decaying~(SAD) to automatically identify ``silent weights'' by tracking weight flipping state, and apply an additional penalty to ``silent weights'' to facilitate their flipping. By efficiently updating weight signs, our method achieves faster convergence and state-of-the-art performance on CIFAR10 and ImageNet1K dataset with various architectures. For example, OvSW obtains 61.6\% and 65.5\% top-1 accuracy on the ImageNet1K using binarized ResNet18 and ResNet34 architecture respectively. Codes are available at \url{https://github.com/JingyangXiang/OvSW}.
Abstract:Robotic manipulation of ungraspable objects with two-finger grippers presents significant challenges due to the paucity of graspable features, while traditional pre-grasping techniques, which rely on repositioning objects and leveraging external aids like table edges, lack the adaptability across object categories and scenes. Addressing this, we introduce PreAfford, a novel pre-grasping planning framework that utilizes a point-level affordance representation and a relay training approach to enhance adaptability across a broad range of environments and object types, including those previously unseen. Demonstrated on the ShapeNet-v2 dataset, PreAfford significantly improves grasping success rates by 69% and validates its practicality through real-world experiments. This work offers a robust and adaptable solution for manipulating ungraspable objects.
Abstract:Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV, a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset $\text{THU}^{\text{MV-EACT}}\text{-50}$, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition.
Abstract:Structured pruning methods are developed to bridge the gap between the massive scale of neural networks and the limited hardware resources. Most current structured pruning methods rely on training datasets to fine-tune the compressed model, resulting in high computational burdens and being inapplicable for scenarios with stringent requirements on privacy and security. As an alternative, some data-free methods have been proposed, however, these methods often require handcraft parameter tuning and can only achieve inflexible reconstruction. In this paper, we propose the Automatic Data-Free Pruning (AutoDFP) method that achieves automatic pruning and reconstruction without fine-tuning. Our approach is based on the assumption that the loss of information can be partially compensated by retaining focused information from similar channels. Specifically, We formulate data-free pruning as an optimization problem, which can be effectively addressed through reinforcement learning. AutoDFP assesses the similarity of channels for each layer and provides this information to the reinforcement learning agent, guiding the pruning and reconstruction process of the network. We evaluate AutoDFP with multiple networks on multiple datasets, achieving impressive compression results. For instance, on the CIFAR-10 dataset, AutoDFP demonstrates a 2.87\% reduction in accuracy loss compared to the recently proposed data-free pruning method DFPC with fewer FLOPs on VGG-16. Furthermore, on the ImageNet dataset, AutoDFP achieves 43.17\% higher accuracy than the SOTA method with the same 80\% preserved ratio on MobileNet-V1.
Abstract:Survival analysis serves as a fundamental component in numerous healthcare applications, where the determination of the time to specific events (such as the onset of a certain disease or death) for patients is crucial for clinical decision-making. Scoring systems are widely used for swift and efficient risk prediction. However, existing methods for constructing survival scores presume that data originates from a single source, posing privacy challenges in collaborations with multiple data owners. We propose a novel framework for building federated scoring systems for multi-site survival outcomes, ensuring both privacy and communication efficiency. We applied our approach to sites with heterogeneous survival data originating from emergency departments in Singapore and the United States. Additionally, we independently developed local scores at each site. In testing datasets from each participant site, our proposed federated scoring system consistently outperformed all local models, evidenced by higher integrated area under the receiver operating characteristic curve (iAUC) values, with a maximum improvement of 11.6%. Additionally, the federated score's time-dependent AUC(t) values showed advantages over local scores, exhibiting narrower confidence intervals (CIs) across most time points. The model developed through our proposed method exhibits effective performance on each local site, signifying noteworthy implications for healthcare research. Sites participating in our proposed federated scoring model training gained benefits by acquiring survival models with enhanced prediction accuracy and efficiency. This study demonstrates the effectiveness of our privacy-preserving federated survival score generation framework and its applicability to real-world heterogeneous survival data.
Abstract:Soft filter pruning~(SFP) has emerged as an effective pruning technique for allowing pruned filters to update and the opportunity for them to regrow to the network. However, this pruning strategy applies training and pruning in an alternative manner, which inevitably causes inconsistent representations between the reconstructed network~(R-NN) at the training and the pruned network~(P-NN) at the inference, resulting in performance degradation. In this paper, we propose to mitigate this gap by learning consistent representation for soft filter pruning, dubbed as CR-SFP. Specifically, for each training step, CR-SFP optimizes the R-NN and P-NN simultaneously with different distorted versions of the same training data, while forcing them to be consistent by minimizing their posterior distribution via the bidirectional KL-divergence loss. Meanwhile, the R-NN and P-NN share backbone parameters thus only additional classifier parameters are introduced. After training, we can export the P-NN for inference. CR-SFP is a simple yet effective training framework to improve the accuracy of P-NN without introducing any additional inference cost. It can also be combined with a variety of pruning criteria and loss functions. Extensive experiments demonstrate our CR-SFP achieves consistent improvements across various CNN architectures. Notably, on ImageNet, our CR-SFP reduces more than 41.8\% FLOPs on ResNet18 with 69.2\% top-1 accuracy, improving SFP by 2.1\% under the same training settings. The code will be publicly available on GitHub.
Abstract:N:M sparsity has received increasing attention due to its remarkable performance and latency trade-off compared with structured and unstructured sparsity. However, existing N:M sparsity methods do not differentiate the relative importance of weights among blocks and leave important weights underappreciated. Besides, they directly apply N:M sparsity to the whole network, which will cause severe information loss. Thus, they are still sub-optimal. In this paper, we propose an efficient and effective Multi-Axis Query methodology, dubbed as MaxQ, to rectify these problems. During the training, MaxQ employs a dynamic approach to generate soft N:M masks, considering the weight importance across multiple axes. This method enhances the weights with more importance and ensures more effective updates. Meanwhile, a sparsity strategy that gradually increases the percentage of N:M weight blocks is applied, which allows the network to heal from the pruning-induced damage progressively. During the runtime, the N:M soft masks can be precomputed as constants and folded into weights without causing any distortion to the sparse pattern and incurring additional computational overhead. Comprehensive experiments demonstrate that MaxQ achieves consistent improvements across diverse CNN architectures in various computer vision tasks, including image classification, object detection and instance segmentation. For ResNet50 with 1:16 sparse pattern, MaxQ can achieve 74.6\% top-1 accuracy on ImageNet and improve by over 2.8\% over the state-of-the-art.
Abstract:Federated learning (FL) has shown promising potential in safeguarding data privacy in healthcare collaborations. While the term "FL" was originally coined by the engineering community, the statistical field has also explored similar privacy-preserving algorithms. Statistical FL algorithms, however, remain considerably less recognized than their engineering counterparts. Our goal was to bridge the gap by presenting the first comprehensive comparison of FL frameworks from both engineering and statistical domains. We evaluated five FL frameworks using both simulated and real-world data. The results indicate that statistical FL algorithms yield less biased point estimates for model coefficients and offer convenient confidence interval estimations. In contrast, engineering-based methods tend to generate more accurate predictions, sometimes surpassing central pooled and statistical FL models. This study underscores the relative strengths and weaknesses of both types of methods, emphasizing the need for increased awareness and their integration in future FL applications.
Abstract:The study of sparsity in Convolutional Neural Networks (CNNs) has become widespread to compress and accelerate models in environments with limited resources. By constraining N consecutive weights along the output channel to be group-wise non-zero, the recent network with 1$\times$N sparsity has received tremendous popularity for its three outstanding advantages: 1) A large amount of storage space saving by a \emph{Block Sparse Row} matrix. 2) Excellent performance at a high sparsity. 3) Significant speedups on CPUs with Advanced Vector Extensions. Recent work requires selecting and fine-tuning 1$\times$N sparse weights based on dense pre-trained weights, leading to the problems such as expensive training cost and memory access, sub-optimal model quality, as well as unbalanced workload across threads (different sparsity across output channels). To overcome them, this paper proposes a novel \emph{\textbf{S}oft \textbf{U}niform \textbf{B}lock \textbf{P}runing} (SUBP) approach to train a uniform 1$\times$N sparse structured network from scratch. Specifically, our approach tends to repeatedly allow pruned blocks to regrow to the network based on block angular redundancy and importance sampling in a uniform manner throughout the training process. It not only makes the model less dependent on pre-training, reduces the model redundancy and the risk of pruning the important blocks permanently but also achieves balanced workload. Empirically, on ImageNet, comprehensive experiments across various CNN architectures show that our SUBP consistently outperforms existing 1$\times$N and structured sparsity methods based on pre-trained models or training from scratch. Source codes and models are available at \url{https://github.com/JingyangXiang/SUBP}.