Abstract:Humans organize knowledge into compact categories through semantic compression by mapping diverse instances to abstract representations while preserving meaning (e.g., robin and blue jay are both birds; most birds can fly). These concepts reflect a trade-off between expressive fidelity and representational simplicity. Large Language Models (LLMs) demonstrate remarkable linguistic abilities, yet whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear. We introduce a novel information-theoretic framework, drawing from Rate-Distortion Theory and the Information Bottleneck principle, to quantitatively compare these strategies. Analyzing token embeddings from a diverse suite of LLMs against seminal human categorization benchmarks, we uncover key divergences. While LLMs form broad conceptual categories that align with human judgment, they struggle to capture the fine-grained semantic distinctions crucial for human understanding. More fundamentally, LLMs demonstrate a strong bias towards aggressive statistical compression, whereas human conceptual systems appear to prioritize adaptive nuance and contextual richness, even if this results in lower compressional efficiency by our measures. These findings illuminate critical differences between current AI and human cognitive architectures, guiding pathways toward LLMs with more human-aligned conceptual representations.
Abstract:State space models (SSMs) for language modelling promise an efficient and performant alternative to quadratic-attention Transformers, yet show variable performance on recalling basic information from the context. While performance on synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural metrics provide little information as to why--on a mechanistic level--certain architectures fail and others succeed. To address this, we conduct experiments on AR and find that only Transformers and Based SSM models fully succeed at AR, with Mamba a close third, whereas the other SSMs (H3, Hyena) fail. We then use causal interventions to explain why. We find that Transformers and Based learn to store key-value associations in-context using induction heads. By contrast, the SSMs compute these associations only at the last state, with only Mamba succeeding because of its short convolution component. To extend and deepen these findings, we introduce Associative Treecall (ATR), a synthetic task similar to AR based on PCFG induction. ATR introduces language-like hierarchical structure into the AR setting. We find that all architectures learn the same mechanism as they did for AR, and the same three models succeed at the task. These results reveal that architectures with similar accuracy may still have substantive differences, motivating the adoption of mechanistic evaluations.
Abstract:Human listeners readily adjust to unfamiliar speakers and language varieties through exposure, but do these adaptation benefits extend to state-of-the-art spoken language models? We introduce a scalable framework that allows for in-context learning (ICL) in Phi-4 Multimodal using interleaved task prompts and audio-text pairs, and find that as few as 12 example utterances (~50 seconds) at inference time reduce word error rates by a relative 19.7% (1.2 pp.) on average across diverse English corpora. These improvements are most pronounced in low-resource varieties, when the context and target speaker match, and when more examples are provided--though scaling our procedure yields diminishing marginal returns to context length. Overall, we find that our novel ICL adaptation scheme (1) reveals a similar performance profile to human listeners, and (2) demonstrates consistent improvements to automatic speech recognition (ASR) robustness across diverse speakers and language backgrounds. While adaptation succeeds broadly, significant gaps remain for certain varieties, revealing where current models still fall short of human flexibility. We release our prompts and code on GitHub.
Abstract:A serious risk to the safety and utility of LLMs is sycophancy, i.e., excessive agreement with and flattery of the user. Yet existing work focuses on only one aspect of sycophancy: agreement with users' explicitly stated beliefs that can be compared to a ground truth. This overlooks forms of sycophancy that arise in ambiguous contexts such as advice and support-seeking, where there is no clear ground truth, yet sycophancy can reinforce harmful implicit assumptions, beliefs, or actions. To address this gap, we introduce a richer theory of social sycophancy in LLMs, characterizing sycophancy as the excessive preservation of a user's face (the positive self-image a person seeks to maintain in an interaction). We present ELEPHANT, a framework for evaluating social sycophancy across five face-preserving behaviors (emotional validation, moral endorsement, indirect language, indirect action, and accepting framing) on two datasets: open-ended questions (OEQ) and Reddit's r/AmITheAsshole (AITA). Across eight models, we show that LLMs consistently exhibit high rates of social sycophancy: on OEQ, they preserve face 47% more than humans, and on AITA, they affirm behavior deemed inappropriate by crowdsourced human judgments in 42% of cases. We further show that social sycophancy is rewarded in preference datasets and is not easily mitigated. Our work provides theoretical grounding and empirical tools (datasets and code) for understanding and addressing this under-recognized but consequential issue.
Abstract:Large Language Models (LLMs) excel at countless tasks, yet struggle with creativity. In this paper, we introduce a novel approach that couples LLMs with structured representations and cognitively inspired manipulations to generate more creative and diverse ideas. Our notion of creativity goes beyond superficial token-level variations; rather, we explicitly recombine structured representations of existing ideas, allowing our algorithm to effectively explore the more abstract landscape of ideas. We demonstrate our approach in the culinary domain with DishCOVER, a model that generates creative recipes. Experiments comparing our model's results to those of GPT-4o show greater diversity. Domain expert evaluations reveal that our outputs, which are mostly coherent and feasible culinary creations, significantly surpass GPT-4o in terms of novelty, thus outperforming it in creative generation. We hope our work inspires further research into structured creativity in AI.
Abstract:As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
Abstract:Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.
Abstract:Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to overreliance and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs. HumT also offers insights into the impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
Abstract:Word similarity has many applications to social science and cultural analytics tasks like measuring meaning change over time and making sense of contested terms. Yet traditional similarity methods based on cosine similarity between word embeddings cannot capture the context-dependent, asymmetrical, polysemous nature of semantic similarity. We propose a new measure of similarity, Word Confusion, that reframes semantic similarity in terms of feature-based classification confusion. Word Confusion is inspired by Tversky's suggestion that similarity features be chosen dynamically. Here we train a classifier to map contextual embeddings to word identities and use the classifier confusion (the probability of choosing a confounding word c instead of the correct target word t) as a measure of the similarity of c and t. The set of potential confounding words acts as the chosen features. Our method is comparable to cosine similarity in matching human similarity judgments across several datasets (MEN, WirdSim353, and SimLex), and can measure similarity using predetermined features of interest. We demonstrate our model's ability to make use of dynamic features by applying it to test a hypothesis about changes in the 18th C. meaning of the French word "revolution" from popular to state action during the French Revolution. We hope this reimagining of semantic similarity will inspire the development of new tools that better capture the multi-faceted and dynamic nature of language, advancing the fields of computational social science and cultural analytics and beyond.
Abstract:Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss scales with input length and varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 65.9% and the average error by up to 47.7%. CTC-DRO can be applied to ASR with minimal computational costs, and offers the potential for reducing group disparities in other domains with similar challenges.