Abstract:Recent efforts in Spoken Dialogue Modeling aim to synthesize spoken dialogue without the need for direct transcription, thereby preserving the wealth of non-textual information inherent in speech. However, this approach faces a challenge when speakers talk simultaneously, requiring stereo dialogue data with speakers recorded on separate channels, a notably scarce resource. To address this, we have developed an innovative pipeline capable of transforming single-channel dialogue data into pseudo-stereo data. This expanded our training dataset from a mere 2,000 to an impressive 17,600 hours, significantly enriching the diversity and quality of the training examples available. The inclusion of this pseudo-stereo data has proven to be effective in improving the performance of spoken dialogue language models. Additionally, we explored the use of discrete units of different speech foundation models for spoken dialogue generation.
Abstract:The sound codec's dual roles in minimizing data transmission latency and serving as tokenizers underscore its critical importance. Recent years have witnessed significant developments in codec models. The ideal sound codec should preserve content, paralinguistics, speakers, and audio information. However, the question of which codec achieves optimal sound information preservation remains unanswered, as in different papers, models are evaluated on their selected experimental settings. This study introduces Codec-SUPERB, an acronym for Codec sound processing Universal PERformance Benchmark. It is an ecosystem designed to assess codec models across representative sound applications and signal-level metrics rooted in sound domain knowledge.Codec-SUPERB simplifies result sharing through an online leaderboard, promoting collaboration within a community-driven benchmark database, thereby stimulating new development cycles for codecs. Furthermore, we undertake an in-depth analysis to offer insights into codec models from both application and signal perspectives, diverging from previous codec papers mainly concentrating on signal-level comparisons. Finally, we will release codes, the leaderboard, and data to accelerate progress within the community.
Abstract:The 2023 Multilingual Speech Universal Performance Benchmark (ML-SUPERB) Challenge expands upon the acclaimed SUPERB framework, emphasizing self-supervised models in multilingual speech recognition and language identification. The challenge comprises a research track focused on applying ML-SUPERB to specific multilingual subjects, a Challenge Track for model submissions, and a New Language Track where language resource researchers can contribute and evaluate their low-resource language data in the context of the latest progress in multilingual speech recognition. The challenge garnered 12 model submissions and 54 language corpora, resulting in a comprehensive benchmark encompassing 154 languages. The findings indicate that merely scaling models is not the definitive solution for multilingual speech tasks, and a variety of speech/voice types present significant challenges in multilingual speech processing.
Abstract:Speech signals, typically sampled at rates in the tens of thousands per second, contain redundancies, evoking inefficiencies in sequence modeling. High-dimensional speech features such as spectrograms are often used as the input for the subsequent model. However, they can still be redundant. Recent investigations proposed the use of discrete speech units derived from self-supervised learning representations, which significantly compresses the size of speech data. Applying various methods, such as de-duplication and subword modeling, can further compress the speech sequence length. Hence, training time is significantly reduced while retaining notable performance. In this study, we undertake a comprehensive and systematic exploration into the application of discrete units within end-to-end speech processing models. Experiments on 12 automatic speech recognition, 3 speech translation, and 1 spoken language understanding corpora demonstrate that discrete units achieve reasonably good results in almost all the settings. We intend to release our configurations and trained models to foster future research efforts.
Abstract:As a weakly-supervised learning paradigm, complementary label learning (CLL) aims to learn a multi-class classifier from only complementary labels, classes to which an instance does not belong. Despite various studies have addressed how to learn from CLL, those methods typically rely on some distributional assumptions on the complementary labels, and are benchmarked only on some synthetic datasets. It remains unclear how the noise or bias arising from the human annotation process would affect those CLL algorithms. To fill the gap, we design a protocol to collect complementary labels annotated by human. Two datasets, CLCIFAR10 and CLCIFAR20, based on CIFAR10 and CIFAR100, respectively, are collected. We analyzed the empirical transition matrices of the collected datasets, and observed that they are noisy and biased. We then performed extensive benchmark experiments on the collected datasets with various CLL algorithms to validate whether the existing algorithms can learn from the real-world complementary datasets. The dataset can be accessed with the following link: https://github.com/ntucllab/complementary_cifar.