Aalborg University
Abstract:We propose a channel selection method for hearing aid applications using remote microphones, in the presence of multiple competing talkers. The proposed channel selection method uses the hearing aid user's head-steering direction to identify the remote channel originating from the frontal direction of the hearing aid user, which captures the target talker signal. We pose the channel selection task as a multiple hypothesis testing problem, and derive a maximum likelihood solution. Under realistic, simplifying assumptions, the solution selects the remote channel which has the highest weighted squared absolute correlation coefficient with the output of the head-steered hearing aid beamformer. We analyze the performance of the proposed channel selection method using close-talking remote microphones and table microphone arrays. Through simulations using realistic acoustic scenes, we show that the proposed channel selection method consistently outperforms existing methods in accurately finding the remote channel that captures the target talker signal, in the presence of multiple competing talkers, without the use of any additional sensors.
Abstract:With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
Abstract:While attention-based architectures, such as Conformers, excel in speech enhancement, they face challenges such as scalability with respect to input sequence length. In contrast, the recently proposed Extended Long Short-Term Memory (xLSTM) architecture offers linear scalability. However, xLSTM-based models remain unexplored for speech enhancement. This paper introduces xLSTM-SENet, the first xLSTM-based single-channel speech enhancement system. A comparative analysis reveals that xLSTM-and notably, even LSTM-can match or outperform state-of-the-art Mamba- and Conformer-based systems across various model sizes in speech enhancement on the VoiceBank+Demand dataset. Through ablation studies, we identify key architectural design choices such as exponential gating and bidirectionality contributing to its effectiveness. Our best xLSTM-based model, xLSTM-SENet2, outperforms state-of-the-art Mamba- and Conformer-based systems on the Voicebank+DEMAND dataset.
Abstract:Target-Speaker Voice Activity Detection (TS-VAD) is the task of detecting the presence of speech from a known target-speaker in an audio frame. Recently, deep neural network-based models have shown good performance in this task. However, training these models requires extensive labelled data, which is costly and time-consuming to obtain, particularly if generalization to unseen environments is crucial. To mitigate this, we propose a causal, Self-Supervised Learning (SSL) pretraining framework, called Denoising Autoregressive Predictive Coding (DN-APC), to enhance TS-VAD performance in noisy conditions. We also explore various speaker conditioning methods and evaluate their performance under different noisy conditions. Our experiments show that DN-APC improves performance in noisy conditions, with a general improvement of approx. 2% in both seen and unseen noise. Additionally, we find that FiLM conditioning provides the best overall performance. Representation analysis via tSNE plots reveals robust initial representations of speech and non-speech from pretraining. This underscores the effectiveness of SSL pretraining in improving the robustness and performance of TS-VAD models in noisy environments.
Abstract:Room equalisation aims to increase the quality of loudspeaker reproduction in reverberant environments, compensating for colouration caused by imperfect room reflections and frequency dependant loudspeaker directivity. A common technique in the field of room equalisation, is to invert a prototype Room Impulse Response (RIR). Rather than inverting a single RIR at the listening position, a prototype response is composed of several responses distributed around the listening area. This paper proposes a method of impulse response prototyping, using estimated receiver positions, to form a weighted average prototype response. A method of receiver distance estimation is described, supporting the implementation of the prototype RIR. The proposed prototyping method is compared to other methods by measuring their post equalisation spectral deviation at several positions in a simulated room.
Abstract:The performance of deep neural network-based speech enhancement systems typically increases with the training dataset size. However, studies that investigated the effect of training dataset size on speech enhancement performance did not consider recent approaches, such as diffusion-based generative models. Diffusion models are typically trained with massive datasets for image generation tasks, but whether this is also required for speech enhancement is unknown. Moreover, studies that investigated the effect of training dataset size did not control for the data diversity. It is thus unclear whether the performance improvement was due to the increased dataset size or diversity. Therefore, we systematically investigate the effect of training dataset size on the performance of popular state-of-the-art discriminative and diffusion-based speech enhancement systems. We control for the data diversity by using a fixed set of speech utterances, noise segments and binaural room impulse responses to generate datasets of different sizes. We find that the diffusion-based systems do not benefit from increasing the training dataset size as much as the discriminative systems. They perform the best relative to the discriminative systems with datasets of 10 h or less, but they are outperformed by the discriminative systems with datasets of 100 h or more.
Abstract:Ensuring intelligible speech communication for hearing assistive devices in low-latency scenarios presents significant challenges in terms of speech enhancement, coding and transmission. In this paper, we propose novel solutions for low-latency joint speech transmission and enhancement, leveraging deep neural networks (DNNs). Our approach integrates two state-of-the-art DNN architectures for low-latency speech enhancement and low-latency analog joint source-channel-based transmission, creating a combined low-latency system and jointly training both systems in an end-to-end approach. Due to the computational demands of the enhancement system, this order is suitable when high computational power is unavailable in the decoder, like hearing assistive devices. The proposed system enables the configuration of total latency, achieving high performance even at latencies as low as 3 ms, which is typically challenging to attain. The simulation results provide compelling evidence that a joint enhancement and transmission system is superior to a simple concatenation system in diverse settings, encompassing various wireless channel conditions, latencies, and background noise scenarios.
Abstract:This article investigates the use of deep neural networks (DNNs) for hearing-loss compensation. Hearing loss is a prevalent issue affecting millions of people worldwide, and conventional hearing aids have limitations in providing satisfactory compensation. DNNs have shown remarkable performance in various auditory tasks, including speech recognition, speaker identification, and music classification. In this study, we propose a DNN-based approach for hearing-loss compensation, which is trained on the outputs of hearing-impaired and normal-hearing DNN-based auditory models in response to speech signals. First, we introduce a framework for emulating auditory models using DNNs, focusing on an auditory-nerve model in the auditory pathway. We propose a linearization of the DNN-based approach, which we use to analyze the DNN-based hearing-loss compensation. Additionally we develop a simple approach to choose the acoustic center frequencies of the auditory model used for the compensation strategy. Finally, we evaluate the DNN-based hearing-loss compensation strategies using listening tests with hearing impaired listeners. The results demonstrate that the proposed approach results in feasible hearing-loss compensation strategies. Our proposed approach was shown to provide an increase in speech intelligibility and was found to outperform a conventional approach in terms of perceived speech quality.
Abstract:Advanced auditory models are useful in designing signal-processing algorithms for hearing-loss compensation or speech enhancement. Such auditory models provide rich and detailed descriptions of the auditory pathway, and might allow for individualization of signal-processing strategies, based on physiological measurements. However, these auditory models are often computationally demanding, requiring significant time to compute. To address this issue, previous studies have explored the use of deep neural networks to emulate auditory models and reduce inference time. While these deep neural networks offer impressive efficiency gains in terms of computational time, they may suffer from uneven emulation performance as a function of auditory-model frequency-channels and input sound pressure level, making them unsuitable for many tasks. In this study, we demonstrate that the conventional machine-learning optimization objective used in existing state-of-the-art methods is the primary source of this limitation. Specifically, the optimization objective fails to account for the frequency- and level-dependencies of the auditory model, caused by a large input dynamic range and different types of hearing losses emulated by the auditory model. To overcome this limitation, we propose a new optimization objective that explicitly embeds the frequency- and level-dependencies of the auditory model. Our results show that this new optimization objective significantly improves the emulation performance of deep neural networks across relevant input sound levels and auditory-model frequency channels, without increasing the computational load during inference. Addressing these limitations is essential for advancing the application of auditory models in signal-processing tasks, ensuring their efficacy in diverse scenarios.
Abstract:In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.