Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Decision-making pipelines are generally characterized by tradeoffs among various risk functions. It is often desirable to manage such tradeoffs in a data-adaptive manner. As we demonstrate, if this is done naively, state-of-the art uncertainty quantification methods can lead to significant violations of putative risk guarantees. To address this issue, we develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively. Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions. To illustrate the benefits of our approach, we carry out numerical experiments on synthetic data and the large-scale vision dataset MS-COCO.

Via

Figures and Tables:

Abstract:The evaluation of machine learning models using human-labeled validation data can be expensive and time-consuming. AI-labeled synthetic data can be used to decrease the number of human annotations required for this purpose in a process called autoevaluation. We suggest efficient and statistically principled algorithms for this purpose that improve sample efficiency while remaining unbiased. These algorithms increase the effective human-labeled sample size by up to 50% on experiments with GPT-4.

Via

Abstract:The performance of an imaging system is limited by optical aberrations, which cause blurriness in the resulting image. Digital correction techniques, such as deconvolution, have limited ability to correct the blur, since some spatial frequencies in the scene are not measured adequately (i.e., 'zeros' of the system transfer function). We prove that the addition of a random mask to an imaging system removes its dependence on aberrations, reducing the likelihood of zeros in the transfer function and consequently decreasing the sensitivity to noise during deconvolution. In simulation, we show that this strategy improves image quality over a range of aberration types, aberration strengths, and signal-to-noise ratios.

Via

Abstract:We introduce a method for online conformal prediction with decaying step sizes. Like previous methods, ours possesses a retrospective guarantee of coverage for arbitrary sequences. However, unlike previous methods, we can simultaneously estimate a population quantile when it exists. Our theory and experiments indicate substantially improved practical properties: in particular, when the distribution is stable, the coverage is close to the desired level for every time point, not just on average over the observed sequence.

Via

Figures and Tables:

Abstract:We present PPI++: a computationally lightweight methodology for estimation and inference based on a small labeled dataset and a typically much larger dataset of machine-learning predictions. The methods automatically adapt to the quality of available predictions, yielding easy-to-compute confidence sets -- for parameters of any dimensionality -- that always improve on classical intervals using only the labeled data. PPI++ builds on prediction-powered inference (PPI), which targets the same problem setting, improving its computational and statistical efficiency. Real and synthetic experiments demonstrate the benefits of the proposed adaptations.

Via

Authors:Jordan Lekeufack, Anastasios N. Angelopoulos, Andrea Bajcsy, Michael I. Jordan, Jitendra Malik

Figures and Tables:

Abstract:We introduce Conformal Decision Theory, a framework for producing safe autonomous decisions despite imperfect machine learning predictions. Examples of such decisions are ubiquitous, from robot planning algorithms that rely on pedestrian predictions, to calibrating autonomous manufacturing to exhibit high throughput and low error, to the choice of trusting a nominal policy versus switching to a safe backup policy at run-time. The decisions produced by our algorithms are safe in the sense that they come with provable statistical guarantees of having low risk without any assumptions on the world model whatsoever; the observations need not be I.I.D. and can even be adversarial. The theory extends results from conformal prediction to calibrate decisions directly, without requiring the construction of prediction sets. Experiments demonstrate the utility of our approach in robot motion planning around humans, automated stock trading, and robot manufacturing.

Via

Figures and Tables:

Abstract:We study the problem of uncertainty quantification for time series prediction, with the goal of providing easy-to-use algorithms with formal guarantees. The algorithms we present build upon ideas from conformal prediction and control theory, are able to prospectively model conformal scores in an online setting, and adapt to the presence of systematic errors due to seasonality, trends, and general distribution shifts. Our theory both simplifies and strengthens existing analyses in online conformal prediction. Experiments on 4-week-ahead forecasting of statewide COVID-19 death counts in the U.S. show an improvement in coverage over the ensemble forecaster used in official CDC communications. We also run experiments on predicting electricity demand, market returns, and temperature using autoregressive, Theta, Prophet, and Transformer models. We provide an extendable codebase for testing our methods and for the integration of new algorithms, data sets, and forecasting rules.

Via

Authors:Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani

Figures and Tables:

Abstract:Standard conformal prediction methods provide a marginal coverage guarantee, which means that for a random test point, the conformal prediction set contains the true label with a user-chosen probability. In many classification problems, we would like to obtain a stronger guarantee -- that for test points of a specific class, the prediction set contains the true label with the same user-chosen probability. Existing conformal prediction methods do not work well when there is a limited amount of labeled data per class, as is often the case in real applications where the number of classes is large. We propose a method called clustered conformal prediction, which clusters together classes that have "similar" conformal scores and then performs conformal prediction at the cluster level. Based on empirical evaluation across four image data sets with many (up to 1000) classes, we find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.

Via

Figures and Tables:

Abstract:We introduce prediction-powered inference $\unicode{x2013}$ a framework for performing valid statistical inference when an experimental data set is supplemented with predictions from a machine-learning system. Our framework yields provably valid conclusions without making any assumptions on the machine-learning algorithm that supplies the predictions. Higher accuracy of the predictions translates to smaller confidence intervals, permitting more powerful inference. Prediction-powered inference yields simple algorithms for computing valid confidence intervals for statistical objects such as means, quantiles, and linear and logistic regression coefficients. We demonstrate the benefits of prediction-powered inference with data sets from proteomics, genomics, electronic voting, remote sensing, census analysis, and ecology.

Via

Figures and Tables:

Abstract:We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise. Our analysis tackles both regression and classification problems, characterizing when and how it is possible to construct uncertainty sets that correctly cover the unobserved noiseless ground truth labels. Through stylized theoretical examples and practical experiments, we argue that naive conformal prediction covers the noiseless ground truth label unless the noise distribution is adversarially designed. This leads us to believe that correcting for label noise is unnecessary except for pathological data distributions or noise sources. In such cases, we can also correct for noise of bounded size in the conformal prediction algorithm in order to ensure correct coverage of the ground truth labels without score or data regularity.

Via