Abstract:With the development of Information and Communication Technologies and the dissemination of smartphones, especially now that image search is possible through the internet, e-commerce markets are more activating purchasing services for a wide variety of products. However, it often happens that the image of the desired product is impaired and that the search engine does not recognize it properly. The idea of this study is to help search for products through image restoration using an image pre-processing and image inpainting algorithm for damaged images. It helps users easily purchase the items they want by providing a more accurate image search system. Besides, the system has the advantage of efficiently showing information by category, so that enables efficient sales of registered information.
Abstract:We propose a novel distance-based regularization method for deep metric learning called Multi-level Distance Regularization (MDR). MDR explicitly disturbs a learning procedure by regularizing pairwise distances between embedding vectors into multiple levels that represents a degree of similarity between a pair. In the training stage, the model is trained with both MDR and an existing loss function of deep metric learning, simultaneously; the two losses interfere with the objective of each other, and it makes the learning process difficult. Moreover, MDR prevents some examples from being ignored or overly influenced in the learning process. These allow the parameters of the embedding network to be settle on a local optima with better generalization. Without bells and whistles, MDR with simple Triplet loss achieves the-state-of-the-art performance in various benchmark datasets: CUB-200-2011, Cars-196, Stanford Online Products, and In-Shop Clothes Retrieval. We extensively perform ablation studies on its behaviors to show the effectiveness of MDR. By easily adopting our MDR, the previous approaches can be improved in performance and generalization ability.
Abstract:Face anti-spoofing aims to prevent false authentications of face recognition systems by distinguishing whether an image is originated from a human face or a spoof medium. We propose a novel method called Doubly Adversarial Suppression Network (DASN) for domain-agnostic face anti-spoofing; DASN improves the generalization ability to unseen domains by learning to effectively suppress spoof-irrelevant factors (SiFs) (e.g., camera sensors, illuminations). To achieve our goal, we introduce two types of adversarial learning schemes. In the first adversarial learning scheme, multiple SiFs are suppressed by deploying multiple discrimination heads that are trained against an encoder. In the second adversarial learning scheme, each of the discrimination heads is also adversarially trained to suppress a spoof factor, and the group of the secondary spoof classifier and the encoder aims to intensify the spoof factor by overcoming the suppression. We evaluate the proposed method on four public benchmark datasets, and achieve remarkable evaluation results. The results demonstrate the effectiveness of the proposed method.
Abstract:The datasets of face recognition contain an enormous number of identities and instances. However, conventional methods have difficulty in reflecting the entire distribution of the datasets because a mini-batch of small size contains only a small portion of all identities. To overcome this difficulty, we propose a novel method called BroadFace, which is a learning process to consider a massive set of identities, comprehensively. In BroadFace, a linear classifier learns optimal decision boundaries among identities from a large number of embedding vectors accumulated over past iterations. By referring more instances at once, the optimality of the classifier is naturally increased on the entire datasets. Thus, the encoder is also globally optimized by referring the weight matrix of the classifier. Moreover, we propose a novel compensation method to increase the number of referenced instances in the training stage. BroadFace can be easily applied on many existing methods to accelerate a learning process and obtain a significant improvement in accuracy without extra computational burden at inference stage. We perform extensive ablation studies and experiments on various datasets to show the effectiveness of BroadFace, and also empirically prove the validity of our compensation method. BroadFace achieves the state-of-the-art results with significant improvements on nine datasets in 1:1 face verification and 1:N face identification tasks, and is also effective in image retrieval.
Abstract:In the field of face recognition, a model learns to distinguish millions of face images with fewer dimensional embedding features, and such vast information may not be properly encoded in the conventional model with a single branch. We propose a novel face-recognition-specialized architecture called GroupFace that utilizes multiple group-aware representations, simultaneously, to improve the quality of the embedding feature. The proposed method provides self-distributed labels that balance the number of samples belonging to each group without additional human annotations, and learns the group-aware representations that can narrow down the search space of the target identity. We prove the effectiveness of the proposed method by showing extensive ablation studies and visualizations. All the components of the proposed method can be trained in an end-to-end manner with a marginal increase of computational complexity. Finally, the proposed method achieves the state-of-the-art results with significant improvements in 1:1 face verification and 1:N face identification tasks on the following public datasets: LFW, YTF, CALFW, CPLFW, CFP, AgeDB-30, MegaFace, IJB-B and IJB-C.
Abstract:An image pyramid can extend many object detection algorithms to solve detection on multiple scales. However, interpolation during the resampling process of an image pyramid causes gradient variation, which is the difference of the gradients between the original image and the scaled images. Our key insight is that the increased variance of gradients makes the classifiers have difficulty in correctly assigning categories. We prove the existence of the gradient variation by formulating the ratio of gradient expectations between an original image and scaled images, then propose a simple and novel gradient normalization method to eliminate the effect of this variation. The proposed normalization method reduce the variance in an image pyramid and allow the classifier to focus on a smaller coverage. We show the improvement in three different visual recognition problems: pedestrian detection, pose estimation, and object detection. The method is generally applicable to many vision algorithms based on an image pyramid with gradients.
Abstract:Human face recognition is one of the most important research areas in biometrics. However, the robust face recognition under a drastic change of the facial pose, expression, and illumination is a big challenging problem for its practical application. Such variations make face recognition more difficult. In this paper, we propose a novel face recognition method, called Attentional Feature-pair Relation Network (AFRN), which represents the face by the relevant pairs of local appearance block features with their attention scores. The AFRN represents the face by all possible pairs of the 9x9 local appearance block features, the importance of each pair is considered by the attention map that is obtained from the low-rank bilinear pooling, and each pair is weighted by its corresponding attention score. To increase the accuracy, we select top-K pairs of local appearance block features as relevant facial information and drop the remaining irrelevant. The weighted top-K pairs are propagated to extract the joint feature-pair relation by using bilinear attention network. In experiments, we show the effectiveness of the proposed AFRN and achieve the outstanding performance in the 1:1 face verification and 1:N face identification tasks compared to existing state-of-the-art methods on the challenging LFW, YTF, CALFW, CPLFW, CFP, AgeDB, IJB-A, IJB-B, and IJB-C datasets.
Abstract:We propose a new face recognition method, called a pairwise relational network (PRN), which takes local appearance features around landmark points on the feature map, and captures unique pairwise relations with the same identity and discriminative pairwise relations between different identities. The PRN aims to determine facial part-relational structure from local appearance feature pairs. Because meaningful pairwise relations should be identity dependent, we add a face identity state feature, which obtains from the long short-term memory (LSTM) units network with the sequential local appearance features. To further improve accuracy, we combined the global appearance features with the pairwise relational feature. Experimental results on the LFW show that the PRN achieved 99.76% accuracy. On the YTF, PRN achieved the state-of-the-art accuracy (96.3%). The PRN also achieved comparable results to the state-of-the-art for both face verification and face identification tasks on the IJB-A and IJB-B. This work is already published on ECCV 2018.
Abstract:Visual context is one of the important clue for object detection and the context information for boundaries of an object is especially valuable. We propose a boundary aware network (BAN) designed to exploit the visual contexts including boundary information and surroundings, named boundary context, and define three types of the boundary contexts: side, vertex and in/out-boundary context. Our BAN consists of 10 sub-networks for the area belonging to the boundary contexts. The detection head of BAN is defined as an ensemble of these sub-networks with different contributions depending on the sub-problem of detection. To verify our method, we visualize the activation of the sub-networks according to the boundary contexts and empirically show that the sub-networks contribute more to the related sub-problem in detection. We evaluate our method on PASCAL VOC detection benchmark and MS COCO dataset. The proposed method achieves the mean Average Precision (mAP) of 83.4% on PASCAL VOC and 36.9% on MS COCO. BAN allows the convolution network to provide an additional source of contexts for detection and selectively focus on the more important contexts, and it can be generally applied to many other detection methods as well to enhance the accuracy in detection.
Abstract:Existing face recognition using deep neural networks is difficult to know what kind of features are used to discriminate the identities of face images clearly. To investigate the effective features for face recognition, we propose a novel face recognition method, called a pairwise relational network (PRN), that obtains local appearance patches around landmark points on the feature map, and captures the pairwise relation between a pair of local appearance patches. The PRN is trained to capture unique and discriminative pairwise relations among different identities. Because the existence and meaning of pairwise relations should be identity dependent, we add a face identity state feature, which obtains from the long short-term memory (LSTM) units network with the sequential local appearance patches on the feature maps, to the PRN. To further improve accuracy of face recognition, we combined the global appearance representation with the pairwise relational feature. Experimental results on the LFW show that the PRN using only pairwise relations achieved 99.65% accuracy and the PRN using both pairwise relations and face identity state feature achieved 99.76% accuracy. On the YTF, both the PRN using only pairwise relations and the PRN using pairwise relations and the face identity state feature achieved the state-of-the-art (95.7% and 96.3%). The PRN also achieved comparable results to the state-of-the-art for both face verification and face identification tasks on the IJB-A, and the state-of-the-art on the IJB-B.