Abstract:The rapid development of Vision-language models (VLMs) enables open-ended perception and reasoning. Recent works have started to investigate how to adapt general-purpose VLMs into personalized assistants. Even commercial models such as ChatGPT now support model personalization by incorporating user-specific information. However, existing methods either learn a set of concept tokens or train a VLM to utilize user-specific information. However, both pipelines struggle to generate accurate answers as personalized assistants. We introduce Jarvis, an innovative framework for a personalized AI assistant through personal KV-Cache retrieval, which stores user-specific information in the KV-Caches of both textual and visual tokens. The textual tokens are created by summarizing user information into metadata, while the visual tokens are produced by extracting distinct image patches from the user's images. When answering a question, Jarvis first retrieves related KV-Caches from personal storage and uses them to ensure accuracy in responses. We also introduce a fine-grained benchmark built with the same distinct image patch mining pipeline, emphasizing accurate question answering based on fine-grained user-specific information. Jarvis is capable of providing more accurate responses, particularly when they depend on specific local details. Jarvis achieves state-of-the-art results in both visual question answering and text-only tasks across multiple datasets, indicating a practical path toward personalized AI assistants. The code and dataset will be released.
Abstract:With the advancement of powerful large-scale reasoning models, effectively evaluating the reasoning capabilities of these models has become increasingly important. However, existing benchmarks designed to assess the reasoning abilities of large models tend to be limited in scope and lack the flexibility to adapt their difficulty according to the evolving reasoning capacities of the models. To address this, we propose MorphoBench, a benchmark that incorporates multidisciplinary questions to evaluate the reasoning capabilities of large models and can adjust and update question difficulty based on the reasoning abilities of advanced models. Specifically, we curate the benchmark by selecting and collecting complex reasoning questions from existing benchmarks and sources such as Olympiad-level competitions. Additionally, MorphoBench adaptively modifies the analytical challenge of questions by leveraging key statements generated during the model's reasoning process. Furthermore, it includes questions generated using simulation software, enabling dynamic adjustment of benchmark difficulty with minimal resource consumption. We have gathered over 1,300 test questions and iteratively adjusted the difficulty of MorphoBench based on the reasoning capabilities of models such as o3 and GPT-5. MorphoBench enhances the comprehensiveness and validity of model reasoning evaluation, providing reliable guidance for improving both the reasoning abilities and scientific robustness of large models. The code has been released in https://github.com/OpenDCAI/MorphoBench.
Abstract:Humans develop an understanding of intuitive physics through active interaction with the world. This approach is in stark contrast to current video models, such as Sora, which rely on passive observation and therefore struggle with grasping physical causality. This observation leads to our central hypothesis: authentic physical intuition of the world model must be grounded in extensive, causally rich interactions with the real world. To test this hypothesis, we present WoW, a 14-billion-parameter generative world model trained on 2 million robot interaction trajectories. Our findings reveal that the model's understanding of physics is a probabilistic distribution of plausible outcomes, leading to stochastic instabilities and physical hallucinations. Furthermore, we demonstrate that this emergent capability can be actively constrained toward physical realism by SOPHIA, where vision-language model agents evaluate the DiT-generated output and guide its refinement by iteratively evolving the language instructions. In addition, a co-trained Inverse Dynamics Model translates these refined plans into executable robotic actions, thus closing the imagination-to-action loop. We establish WoWBench, a new benchmark focused on physical consistency and causal reasoning in video, where WoW achieves state-of-the-art performance in both human and autonomous evaluation, demonstrating strong ability in physical causality, collision dynamics, and object permanence. Our work provides systematic evidence that large-scale, real-world interaction is a cornerstone for developing physical intuition in AI. Models, data, and benchmarks will be open-sourced.




Abstract:We present Perceive Anything Model (PAM), a conceptually straightforward and efficient framework for comprehensive region-level visual understanding in images and videos. Our approach extends the powerful segmentation model SAM 2 by integrating Large Language Models (LLMs), enabling simultaneous object segmentation with the generation of diverse, region-specific semantic outputs, including categories, label definition, functional explanations, and detailed captions. A key component, Semantic Perceiver, is introduced to efficiently transform SAM 2's rich visual features, which inherently carry general vision, localization, and semantic priors into multi-modal tokens for LLM comprehension. To support robust multi-granularity understanding, we also develop a dedicated data refinement and augmentation pipeline, yielding a high-quality dataset of 1.5M image and 0.6M video region-semantic annotations, including novel region-level streaming video caption data. PAM is designed for lightweightness and efficiency, while also demonstrates strong performance across a diverse range of region understanding tasks. It runs 1.2-2.4x faster and consumes less GPU memory than prior approaches, offering a practical solution for real-world applications. We believe that our effective approach will serve as a strong baseline for future research in region-level visual understanding.
Abstract:Classifier-Free Guidance (CFG) significantly enhances controllability in generative models by interpolating conditional and unconditional predictions. However, standard CFG often employs a static unconditional input, which can be suboptimal for iterative generation processes where model uncertainty varies dynamically. We introduce Adaptive Classifier-Free Guidance (A-CFG), a novel method that tailors the unconditional input by leveraging the model's instantaneous predictive confidence. At each step of an iterative (masked) diffusion language model, A-CFG identifies tokens in the currently generated sequence for which the model exhibits low confidence. These tokens are temporarily re-masked to create a dynamic, localized unconditional input. This focuses CFG's corrective influence precisely on areas of ambiguity, leading to more effective guidance. We integrate A-CFG into a state-of-the-art masked diffusion language model and demonstrate its efficacy. Experiments on diverse language generation benchmarks show that A-CFG yields substantial improvements over standard CFG, achieving, for instance, a 3.9 point gain on GPQA. Our work highlights the benefit of dynamically adapting guidance mechanisms to model uncertainty in iterative generation.
Abstract:Neuromorphic Visual Systems, such as spike cameras, have attracted considerable attention due to their ability to capture clear textures under dynamic conditions. This capability effectively mitigates issues related to motion and aperture blur. However, in contrast to conventional RGB modalities that provide dense spatial information, these systems generate binary, spatially sparse frames as a trade-off for temporally rich visual streams. In this context, generative models emerge as a promising solution to address the inherent limitations of sparse data. These models not only facilitate the conditional fusion of existing information from both spike and RGB modalities but also enable the conditional generation based on latent priors. In this study, we introduce a robust generative processing framework named SpikeGen, designed for visual spike streams captured by spike cameras. We evaluate this framework across multiple tasks involving mixed spike-RGB modalities, including conditional image/video deblurring, dense frame reconstruction from spike streams, and high-speed scene novel-view synthesis. Supported by comprehensive experimental results, we demonstrate that leveraging the latent space operation abilities of generative models allows us to effectively address the sparsity of spatial information while fully exploiting the temporal richness of spike streams, thereby promoting a synergistic enhancement of different visual modalities.
Abstract:Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
Abstract:Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation personalized knowledge-driven generation. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and knowledge-driven generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized knowledge-driven generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.
Abstract:Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at \href{https://github.com/zengkaiya/CaT}{https://github.com/zengkaiya/CaT}.




Abstract:Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different visual encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. The code will be released.