Alert button
Picture for Yoshua Bengio

Yoshua Bengio

Alert button

Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

Aug 22, 2023
Patrick Butlin, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant, George Deane, Stephen M. Fleming, Chris Frith, Xu Ji, Ryota Kanai, Colin Klein, Grace Lindsay, Matthias Michel, Liad Mudrik, Megan A. K. Peters, Eric Schwitzgebel, Jonathan Simon, Rufin VanRullen

Figure 1 for Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Figure 2 for Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Figure 3 for Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Figure 4 for Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.

Viaarxiv icon

Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation

Jul 30, 2023
Chris Chinenye Emezue, Alexandre Drouin, Tristan Deleu, Stefan Bauer, Yoshua Bengio

Figure 1 for Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Figure 2 for Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Figure 3 for Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Figure 4 for Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation

The practical utility of causality in decision-making is widespread and brought about by the intertwining of causal discovery and causal inference. Nevertheless, a notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference. To address this gap, we evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets, on the downstream task of treatment effect estimation. Through the implementation of a distribution-level evaluation, we offer valuable and unique insights into the efficacy of these causal discovery methods for treatment effect estimation, considering both synthetic and real-world scenarios, as well as low-data scenarios. The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes, while some tend to learn many low-probability modes which impacts the (unrelaxed) recall and precision.

* Peer-reviewed and Accepted to ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling 
Viaarxiv icon

AI For Global Climate Cooperation 2023 Competition Proceedings

Jul 10, 2023
Yoshua Bengio, Prateek Gupta, Lu Li, Soham Phade, Sunil Srinivasa, Andrew Williams, Tianyu Zhang, Yang Zhang, Stephan Zheng

The international community must collaborate to mitigate climate change and sustain economic growth. However, collaboration is hard to achieve, partly because no global authority can ensure compliance with international climate agreements. Combining AI with climate-economic simulations offers a promising solution to design international frameworks, including negotiation protocols and climate agreements, that promote and incentivize collaboration. In addition, these frameworks should also have policy goals fulfillment, and sustained commitment, taking into account climate-economic dynamics and strategic behaviors. These challenges require an interdisciplinary approach across machine learning, economics, climate science, law, policy, ethics, and other fields. Towards this objective, we organized AI for Global Climate Cooperation, a Mila competition in which teams submitted proposals and analyses of international frameworks, based on (modifications of) RICE-N, an AI-driven integrated assessment model (IAM). In particular, RICE-N supports modeling regional decision-making using AI agents. Furthermore, the IAM then models the climate-economic impact of those decisions into the future. Whereas the first track focused only on performance metrics, the proposals submitted to the second track were evaluated both quantitatively and qualitatively. The quantitative evaluation focused on a combination of (i) the degree of mitigation of global temperature rise and (ii) the increase in economic productivity. On the other hand, an interdisciplinary panel of human experts in law, policy, sociology, economics and environmental science, evaluated the solutions qualitatively. In particular, the panel considered the effectiveness, simplicity, feasibility, ethics, and notions of climate justice of the protocols. In the third track, the participants were asked to critique and improve RICE-N.

Viaarxiv icon

Simulation-free Schrödinger bridges via score and flow matching

Jul 07, 2023
Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio

Figure 1 for Simulation-free Schrödinger bridges via score and flow matching
Figure 2 for Simulation-free Schrödinger bridges via score and flow matching
Figure 3 for Simulation-free Schrödinger bridges via score and flow matching
Figure 4 for Simulation-free Schrödinger bridges via score and flow matching

We present simulation-free score and flow matching ([SF]$^2$M), a simulation-free objective for inferring stochastic dynamics given unpaired source and target samples drawn from arbitrary distributions. Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous normalizing flows. [SF]$^2$M interprets continuous-time stochastic generative modeling as a Schr\"odinger bridge (SB) problem. It relies on static entropy-regularized optimal transport, or a minibatch approximation, to efficiently learn the SB without simulating the learned stochastic process. We find that [SF]$^2$M is more efficient and gives more accurate solutions to the SB problem than simulation-based methods from prior work. Finally, we apply [SF]$^2$M to the problem of learning cell dynamics from snapshot data. Notably, [SF]$^2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks from simulated data.

* A version of this paper appeared in the New Frontiers in Learning, Control, and Dynamical Systems workshop at ICML 2023. Code: https://github.com/atong01/conditional-flow-matching 
Viaarxiv icon

Generative Flow Networks: a Markov Chain Perspective

Jul 04, 2023
Tristan Deleu, Yoshua Bengio

While Markov chain Monte Carlo methods (MCMC) provide a general framework to sample from a probability distribution defined up to normalization, they often suffer from slow convergence to the target distribution when the latter is highly multi-modal. Recently, Generative Flow Networks (GFlowNets) have been proposed as an alternative framework to mitigate this issue when samples have a clear compositional structure, by treating sampling as a sequential decision making problem. Although they were initially introduced from the perspective of flow networks, the recent advances of GFlowNets draw more and more inspiration from the Markov chain literature, bypassing completely the need for flows. In this paper, we formalize this connection and offer a new perspective for GFlowNets using Markov chains, showing a unifying view for GFlowNets regardless of the nature of the state space as recurrent Markov chains. Positioning GFlowNets under the same theoretical framework as MCMC methods also allows us to identify the similarities between both frameworks, and most importantly to highlight their

Viaarxiv icon

Thompson sampling for improved exploration in GFlowNets

Jun 30, 2023
Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio

Figure 1 for Thompson sampling for improved exploration in GFlowNets
Figure 2 for Thompson sampling for improved exploration in GFlowNets
Figure 3 for Thompson sampling for improved exploration in GFlowNets

Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy. Unlike other algorithms for hierarchical sampling that optimize a variational bound, GFlowNet algorithms can stably run off-policy, which can be advantageous for discovering modes of the target distribution. Despite this flexibility in the choice of behaviour policy, the optimal way of efficiently selecting trajectories for training has not yet been systematically explored. In this paper, we view the choice of trajectories for training as an active learning problem and approach it using Bayesian techniques inspired by methods for multi-armed bandits. The proposed algorithm, Thompson sampling GFlowNets (TS-GFN), maintains an approximate posterior distribution over policies and samples trajectories from this posterior for training. We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.

* Structured Probabilistic Inference and Generative Modeling (SPIGM) workshop @ ICML 2023 
Viaarxiv icon

HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Jun 27, 2023
Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen A. Baccus, Chris Ré

Figure 1 for HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Figure 2 for HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Figure 3 for HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Figure 4 for HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyenas new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level, an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 17 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on all 8 datasets on average by +9 accuracy points.

Viaarxiv icon