Alert button
Picture for Qingsong Xie

Qingsong Xie

Alert button

PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation

Nov 28, 2023
Jian Ma, Chen Chen, Qingsong Xie, Haonan Lu

Text-to-image diffusion models are well-known for their ability to generate realistic images based on textual prompts. However, the existing works have predominantly focused on English, lacking support for non-English text-to-image models. The most commonly used translation methods cannot solve the generation problem related to language culture, while training from scratch on a specific language dataset is prohibitively expensive. In this paper, we are inspired to propose a simple plug-and-play language transfer method based on knowledge distillation. All we need to do is train a lightweight MLP-like parameter-efficient adapter (PEA) with only 6M parameters under teacher knowledge distillation along with a small parallel data corpus. We are surprised to find that freezing the parameters of UNet can still achieve remarkable performance on the language-specific prompt evaluation set, demonstrating that PEA can stimulate the potential generation ability of the original UNet. Additionally, it closely approaches the performance of the English text-to-image model on a general prompt evaluation set. Furthermore, our adapter can be used as a plugin to achieve significant results in downstream tasks in cross-lingual text-to-image generation. Code will be available at: https://github.com/OPPO-Mente-Lab/PEA-Diffusion

* 17 pages, 13 figures 
Viaarxiv icon

Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions

Jul 04, 2023
Weizhen He, Shixiang Tang, Yiheng Deng, Qihao Chen, Qingsong Xie, Yizhou Wang, Lei Bai, Feng Zhu, Rui Zhao, Wanli Ouyang, Donglian Qi, Yunfeng Yan

Figure 1 for Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions
Figure 2 for Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions
Figure 3 for Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions
Figure 4 for Retrieve Anyone: A General-purpose Person Re-identification Task with Instructions

Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a new instruct-ReID task that requires the model to retrieve images according to the given image or language instructions.Our instruct-ReID is a more general ReID setting, where existing ReID tasks can be viewed as special cases by designing different instructions. We propose a large-scale OmniReID benchmark and an adaptive triplet loss as a baseline method to facilitate research in this new setting. Experimental results show that the baseline model trained on our OmniReID benchmark can improve +0.6%, +1.4%, 0.2% mAP on Market1501, CUHK03, MSMT17 for traditional ReID, +0.8%, +2.0%, +13.4% mAP on PRCC, VC-Clothes, LTCC for clothes-changing ReID, +11.7% mAP on COCAS+ real2 for clothestemplate based clothes-changing ReID when using only RGB images, +25.4% mAP on COCAS+ real2 for our newly defined language-instructed ReID. The dataset, model, and code will be available at https://github.com/hwz-zju/Instruct-ReID.

Viaarxiv icon

HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining

Mar 10, 2023
Shixiang Tang, Cheng Chen, Qingsong Xie, Meilin Chen, Yizhou Wang, Yuanzheng Ci, Lei Bai, Feng Zhu, Haiyang Yang, Li Yi, Rui Zhao, Wanli Ouyang

Figure 1 for HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining
Figure 2 for HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining
Figure 3 for HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining
Figure 4 for HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining

Human-centric perceptions include a variety of vision tasks, which have widespread industrial applications, including surveillance, autonomous driving, and the metaverse. It is desirable to have a general pretrain model for versatile human-centric downstream tasks. This paper forges ahead along this path from the aspects of both benchmark and pretraining methods. Specifically, we propose a \textbf{HumanBench} based on existing datasets to comprehensively evaluate on the common ground the generalization abilities of different pretraining methods on 19 datasets from 6 diverse downstream tasks, including person ReID, pose estimation, human parsing, pedestrian attribute recognition, pedestrian detection, and crowd counting. To learn both coarse-grained and fine-grained knowledge in human bodies, we further propose a \textbf{P}rojector \textbf{A}ssis\textbf{T}ed \textbf{H}ierarchical pretraining method (\textbf{PATH}) to learn diverse knowledge at different granularity levels. Comprehensive evaluations on HumanBench show that our PATH achieves new state-of-the-art results on 17 downstream datasets and on-par results on the other 2 datasets. The code will be publicly at \href{https://github.com/OpenGVLab/HumanBench}{https://github.com/OpenGVLab/HumanBench}.

* Accepted to CVPR2023 
Viaarxiv icon