Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of ageing
Abstract:LLM agents are widely used as agents for customer support, content generation, and code assistance. However, they are vulnerable to prompt injection attacks, where adversarial inputs manipulate the model's behavior. Traditional defenses like input sanitization, guard models, and guardrails are either cumbersome or ineffective. In this paper, we propose a novel, lightweight defense mechanism called Polymorphic Prompt Assembling (PPA), which protects against prompt injection with near-zero overhead. The approach is based on the insight that prompt injection requires guessing and breaking the structure of the system prompt. By dynamically varying the structure of system prompts, PPA prevents attackers from predicting the prompt structure, thereby enhancing security without compromising performance. We conducted experiments to evaluate the effectiveness of PPA against existing attacks and compared it with other defense methods.
Abstract:Language agents powered by large language models (LLMs) have demonstrated remarkable capabilities in understanding, reasoning, and executing complex tasks. However, developing robust agents presents significant challenges: substantial engineering overhead, lack of standardized components, and insufficient evaluation frameworks for fair comparison. We introduce Agent Graph-based Orchestration for Reasoning and Assessment (AGORA), a flexible and extensible framework that addresses these challenges through three key contributions: (1) a modular architecture with a graph-based workflow engine, efficient memory management, and clean component abstraction; (2) a comprehensive suite of reusable agent algorithms implementing state-of-the-art reasoning approaches; and (3) a rigorous evaluation framework enabling systematic comparison across multiple dimensions. Through extensive experiments on mathematical reasoning and multimodal tasks, we evaluate various agent algorithms across different LLMs, revealing important insights about their relative strengths and applicability. Our results demonstrate that while sophisticated reasoning approaches can enhance agent capabilities, simpler methods like Chain-of-Thought often exhibit robust performance with significantly lower computational overhead. AGORA not only simplifies language agent development but also establishes a foundation for reproducible agent research through standardized evaluation protocols.
Abstract:Recent advancements in image-to-video (I2V) generation have shown promising performance in conventional scenarios. However, these methods still encounter significant challenges when dealing with complex scenes that require a deep understanding of nuanced motion and intricate object-action relationships. To address these challenges, we present Dynamic-I2V, an innovative framework that integrates Multimodal Large Language Models (MLLMs) to jointly encode visual and textual conditions for a diffusion transformer (DiT) architecture. By leveraging the advanced multimodal understanding capabilities of MLLMs, our model significantly improves motion controllability and temporal coherence in synthesized videos. The inherent multimodality of Dynamic-I2V further enables flexible support for diverse conditional inputs, extending its applicability to various downstream generation tasks. Through systematic analysis, we identify a critical limitation in current I2V benchmarks: a significant bias towards favoring low-dynamic videos, stemming from an inadequate balance between motion complexity and visual quality metrics. To resolve this evaluation gap, we propose DIVE - a novel assessment benchmark specifically designed for comprehensive dynamic quality measurement in I2V generation. In conclusion, extensive quantitative and qualitative experiments confirm that Dynamic-I2V attains state-of-the-art performance in image-to-video generation, particularly revealing significant improvements of 42.5%, 7.9%, and 11.8% in dynamic range, controllability, and quality, respectively, as assessed by the DIVE metric in comparison to existing methods.
Abstract:Even though thermodynamic energy-based crystal structure prediction (CSP) has revolutionized materials discovery, the energy-driven CSP approaches often struggle to identify experimentally realizable metastable materials synthesized through kinetically controlled pathways, creating a critical gap between theoretical predictions and experimental synthesis. Here, we propose a synthesizability-driven CSP framework that integrates symmetry-guided structure derivation with a Wyckoff encode-based machine-learning model, allowing for the efficient localization of subspaces likely to yield highly synthesizable structures. Within the identified promising subspaces, a structure-based synthesizability evaluation model, fine-tuned using recently synthesized structures to enhance predictive accuracy, is employed in conjunction with ab initio calculations to systematically identify synthesizable candidates. The framework successfully reproduces 13 experimentally known XSe (X = Sc, Ti, Mn, Fe, Ni, Cu, Zn) structures, demonstrating its effectiveness in predicting synthesizable structures. Notably, 92,310 structures are filtered from the 554,054 candidates predicted by GNoME, exhibiting great potential for promising synthesizability. Additionally, eight thermodynamically favorable Hf-X-O (X = Ti, V, and Mn) structures have been identified, among which three HfV$_2$O$_7$ candidates exhibit high synthesizability, presenting viable candidates for experimental realization and potentially associated with experimentally observed temperature-induced phase transitions. This work establishes a data-driven paradigm for machine-learning-assisted inorganic materials synthesis, highlighting its potential to bridge the gap between computational predictions and experimental realization while unlocking new opportunities for the targeted discovery of novel functional materials.
Abstract:The combination of Integrated Sensing and Communication (ISAC) and Mobile Edge Computing (MEC) enables devices to simultaneously sense the environment and offload data to the base stations (BS) for intelligent processing, thereby reducing local computational burdens. However, transmitting raw sensing data from ISAC devices to the BS often incurs substantial fronthaul overhead and latency. This paper investigates a three-tier collaborative inference framework enabled by Integrated Sensing, Communication, and Computing (ISCC), where cloud servers, MEC servers, and ISAC devices cooperatively execute different segments of a pre-trained deep neural network (DNN) for intelligent sensing. By offloading intermediate DNN features, the proposed framework can significantly reduce fronthaul transmission load. Furthermore, multiple-input multiple-output (MIMO) technology is employed to enhance both sensing quality and offloading efficiency. To minimize the overall sensing task inference latency across all ISAC devices, we jointly optimize the DNN partitioning strategy, ISAC beamforming, and computational resource allocation at the MEC servers and devices, subject to sensing beampattern constraints. We also propose an efficient two-layer optimization algorithm. In the inner layer, we derive closed-form solutions for computational resource allocation using the Karush-Kuhn-Tucker conditions. Moreover, we design the ISAC beamforming vectors via an iterative method based on the majorization-minimization and weighted minimum mean square error techniques. In the outer layer, we develop a cross-entropy based probabilistic learning algorithm to determine an optimal DNN partitioning strategy. Simulation results demonstrate that the proposed framework substantially outperforms existing two-tier schemes in inference latency.
Abstract:Data races are a prevalent class of concurrency bugs in shared-memory parallel programs, posing significant challenges to software reliability and reproducibility. While there is an extensive body of research on detecting data races and a wealth of practical detection tools across various programming languages, considerably less effort has been directed toward automatically fixing data races at an industrial scale. In large codebases, data races are continuously introduced and exhibit myriad patterns, making automated fixing particularly challenging. In this paper, we tackle the problem of automatically fixing data races at an industrial scale. We present Dr.Fix, a tool that combines large language models (LLMs) with program analysis to generate fixes for data races in real-world settings, effectively addressing a broad spectrum of racy patterns in complex code contexts. Implemented for Go--the programming language widely used in modern microservice architectures where concurrency is pervasive and data races are common--Dr.Fix seamlessly integrates into existing development workflows. We detail the design of Dr.Fix and examine how individual design choices influence the quality of the fixes produced. Over the past 18 months, Dr.Fix has been integrated into developer workflows at Uber demonstrating its practical utility. During this period, Dr.Fix produced patches for 224 (55%) from a corpus of 404 data races spanning various categories; 193 of these patches (86%) were accepted by more than a hundred developers via code reviews and integrated into the codebase.
Abstract:Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
Abstract:Crowd counting, which is a key computer vision task, has emerged as a fundamental technology in crowd analysis and public safety management. However, challenges such as scale variations and complex backgrounds significantly impact the accuracy of crowd counting. To mitigate these issues, this paper proposes a robust Transformer-based crowd counting network, termed RCCFormer, specifically designed for background suppression and scale awareness. The proposed method incorporates a Multi-level Feature Fusion Module (MFFM), which meticulously integrates features extracted at diverse stages of the backbone architecture. It establishes a strong baseline capable of capturing intricate and comprehensive feature representations, surpassing traditional baselines. Furthermore, the introduced Detail-Embedded Attention Block (DEAB) captures contextual information and local details through global self-attention and local attention along with a learnable manner for efficient fusion. This enhances the model's ability to focus on foreground regions while effectively mitigating background noise interference. Additionally, we develop an Adaptive Scale-Aware Module (ASAM), with our novel Input-dependent Deformable Convolution (IDConv) as its fundamental building block. This module dynamically adapts to changes in head target shapes and scales, significantly improving the network's capability to accommodate large-scale variations. The effectiveness of the proposed method is validated on the ShanghaiTech Part_A and Part_B, NWPU-Crowd, and QNRF datasets. The results demonstrate that our RCCFormer achieves excellent performance across all four datasets, showcasing state-of-the-art outcomes.
Abstract:Generation planning approaches face challenges in managing the incompatible mathematical structures between stochastic production simulations for reliability assessment and optimization models for generation planning, which hinders the integration of reliability constraints. This study proposes an approach to embedding reliability verification constraints into generation expansion planning by leveraging a weighted oblique decision tree (WODT) technique. For each planning year, a generation mix dataset, labeled with reliability assessment simulations, is generated. An WODT model is trained using this dataset. Reliability-feasible regions are extracted via depth-first search technique and formulated as disjunctive constraints. These constraints are then transformed into mixed-integer linear form using a convex hull modeling technique and embedded into a unit commitment-integrated generation expansion planning model. The proposed approach is validated through a long-term generation planning case study for the Electric Reliability Council of Texas (ERCOT) region, demonstrating its effectiveness in achieving reliable and optimal planning solutions.
Abstract:The surge of deep learning has catalyzed considerable progress in self-supervised Hyperspectral Anomaly Detection (HAD). The core premise for self-supervised HAD is that anomalous pixels are inherently more challenging to reconstruct, resulting in larger errors compared to the background. However, owing to the powerful nonlinear fitting capabilities of neural networks, self-supervised models often suffer from the Identity Mapping Problem (IMP). The IMP manifests as a tendency for the model to overfit to the entire image, particularly with increasing network complexity or prolonged training iterations. Consequently, the whole image can be precisely reconstructed, and even the anomalous pixels exhibit imperceptible errors, making them difficult to detect. Despite the proposal of several models aimed at addressing the IMP-related issues, a unified descriptive framework and validation of solutions for IMP remain lacking. In this paper, we conduct an in-depth exploration to IMP, and summarize a unified framework that describes IMP from the perspective of network optimization, which encompasses three aspects: perturbation, reconstruction, and regularization. Correspondingly, we introduce three solutions: superpixel pooling and uppooling for perturbation, error-adaptive convolution for reconstruction, and online background pixel mining for regularization. With extensive experiments being conducted to validate the effectiveness, it is hoped that our work will provide valuable insights and inspire further research for self-supervised HAD. Code: \url{https://github.com/yc-cui/Super-AD}.