Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Marc T. Law, Xiaowen Dong, Michael Bronstein

Figures and Tables:

Abstract:We propose a class of trainable deep learning-based geometries called Neural Spacetimes (NSTs), which can universally represent nodes in weighted directed acyclic graphs (DAGs) as events in a spacetime manifold. While most works in the literature focus on undirected graph representation learning or causality embedding separately, our differentiable geometry can encode both graph edge weights in its spatial dimensions and causality in the form of edge directionality in its temporal dimensions. We use a product manifold that combines a quasi-metric (for space) and a partial order (for time). NSTs are implemented as three neural networks trained in an end-to-end manner: an embedding network, which learns to optimize the location of nodes as events in the spacetime manifold, and two other networks that optimize the space and time geometries in parallel, which we call a neural (quasi-)metric and a neural partial order, respectively. The latter two networks leverage recent ideas at the intersection of fractal geometry and deep learning to shape the geometry of the representation space in a data-driven fashion, unlike other works in the literature that use fixed spacetime manifolds such as Minkowski space or De Sitter space to embed DAGs. Our main theoretical guarantee is a universal embedding theorem, showing that any $k$-point DAG can be embedded into an NST with $1+\mathcal{O}(\log(k))$ distortion while exactly preserving its causal structure. The total number of parameters defining the NST is sub-cubic in $k$ and linear in the width of the DAG. If the DAG has a planar Hasse diagram, this is improved to $\mathcal{O}(\log(k)) + 2)$ spatial and 2 temporal dimensions. We validate our framework computationally with synthetic weighted DAGs and real-world network embeddings; in both cases, the NSTs achieve lower embedding distortions than their counterparts using fixed spacetime geometries.

Via

Authors:Raeid Saqur, Anastasis Kratsios, Florian Krach, Yannick Limmer, Jacob-Junqi Tian, John Willes, Blanka Horvath, Frank Rudzicz

Figures and Tables:

Abstract:We propose MoE-F -- a formalised mechanism for combining $N$ pre-trained expert Large Language Models (LLMs) in online time-series prediction tasks by adaptively forecasting the best weighting of LLM predictions at every time step. Our mechanism leverages the conditional information in each expert's running performance to forecast the best combination of LLMs for predicting the time series in its next step. Diverging from static (learned) Mixture of Experts (MoE) methods, MoE-F employs time-adaptive stochastic filtering techniques to combine experts. By framing the expert selection problem as a finite state-space, continuous-time Hidden Markov model (HMM), we can leverage the Wohman-Shiryaev filter. Our approach first constructs $N$ parallel filters corresponding to each of the $N$ individual LLMs. Each filter proposes its best combination of LLMs, given the information that they have access to. Subsequently, the $N$ filter outputs are aggregated to optimize a lower bound for the loss of the aggregated LLMs, which can be optimized in closed-form, thus generating our ensemble predictor. Our contributions here are: (I) the MoE-F algorithm -- deployable as a plug-and-play filtering harness, (II) theoretical optimality guarantees of the proposed filtering-based gating algorithm, and (III) empirical evaluation and ablative results using state of the art foundational and MoE LLMs on a real-world Financial Market Movement task where MoE-F attains a remarkable 17% absolute and 48.5% relative F1 measure improvement over the next best performing individual LLM expert.

Via

Abstract:Predicting the conditional evolution of Volterra processes with stochastic volatility is a crucial challenge in mathematical finance. While deep neural network models offer promise in approximating the conditional law of such processes, their effectiveness is hindered by the curse of dimensionality caused by the infinite dimensionality and non-smooth nature of these problems. To address this, we propose a two-step solution. Firstly, we develop a stable dimension reduction technique, projecting the law of a reasonably broad class of Volterra process onto a low-dimensional statistical manifold of non-positive sectional curvature. Next, we introduce a sequentially deep learning model tailored to the manifold's geometry, which we show can approximate the projected conditional law of the Volterra process. Our model leverages an auxiliary hypernetwork to dynamically update its internal parameters, allowing it to encode non-stationary dynamics of the Volterra process, and it can be interpreted as a gating mechanism in a mixture of expert models where each expert is specialized at a specific point in time. Our hypernetwork further allows us to achieve approximation rates that would seemingly only be possible with very large networks.

Via

Figures and Tables:

Abstract:One of the inherent challenges in deploying transformers on time series is that \emph{reality only happens once}; namely, one typically only has access to a single trajectory of the data-generating process comprised of non-i.i.d. observations. We derive non-asymptotic statistical guarantees in this setting through bounds on the \textit{generalization} of a transformer network at a future-time $t$, given that it has been trained using $N\le t$ observations from a single perturbed trajectory of a Markov process. Under the assumption that the Markov process satisfies a log-Sobolev inequality, we obtain a generalization bound which effectively converges at the rate of ${O}(1/\sqrt{N})$. Our bound depends explicitly on the activation function ($\operatorname{Swish}$, $\operatorname{GeLU}$, or $\tanh$ are considered), the number of self-attention heads, depth, width, and norm-bounds defining the transformer architecture. Our bound consists of three components: (I) The first quantifies the gap between the stationary distribution of the data-generating Markov process and its distribution at time $t$, this term converges exponentially to $0$. (II) The next term encodes the complexity of the transformer model and, given enough time, eventually converges to $0$ at the rate ${O}(\log(N)^r/\sqrt{N})$ for any $r>0$. (III) The third term guarantees that the bound holds with probability at least $1$-$\delta$, and converges at a rate of ${O}(\sqrt{\log(1/\delta)}/\sqrt{N})$.

Via

Abstract:In this paper, we construct a mixture of neural operators (MoNOs) between function spaces whose complexity is distributed over a network of expert neural operators (NOs), with each NO satisfying parameter scaling restrictions. Our main result is a \textit{distributed} universal approximation theorem guaranteeing that any Lipschitz non-linear operator between $L^2([0,1]^d)$ spaces can be approximated uniformly over the Sobolev unit ball therein, to any given $\varepsilon>0$ accuracy, by an MoNO while satisfying the constraint that: each expert NO has a depth, width, and rank of $\mathcal{O}(\varepsilon^{-1})$. Naturally, our result implies that the required number of experts must be large, however, each NO is guaranteed to be small enough to be loadable into the active memory of most computers for reasonable accuracies $\varepsilon$. During our analysis, we also obtain new quantitative expression rates for classical NOs approximating uniformly continuous non-linear operators uniformly on compact subsets of $L^2([0,1]^d)$.

Via

Figures and Tables:

Abstract:Many of the foundations of machine learning rely on the idealized premise that all input and output spaces are infinite, e.g.~$\mathbb{R}^d$. This core assumption is systematically violated in practice due to digital computing limitations from finite machine precision, rounding, and limited RAM. In short, digital computers operate on finite grids in $\mathbb{R}^d$. By exploiting these discrete structures, we show the curse of dimensionality in statistical learning is systematically broken when models are implemented on real computers. Consequentially, we obtain new generalization bounds with dimension-free rates for kernel and deep ReLU MLP regressors, which are implemented on real-world machines. Our results are derived using a new non-asymptotic concentration of measure result between a probability measure over any finite metric space and its empirical version associated with $N$ i.i.d. samples when measured in the $1$-Wasserstein distance. Unlike standard concentration of measure results, the concentration rates in our bounds do not hold uniformly for all sample sizes $N$; instead, our rates can adapt to any given $N$. This yields significantly tighter bounds for realistic sample sizes while achieving the optimal worst-case rate of $\mathcal{O}(1/N^{1/2})$ for massive. Our results are built on new techniques combining metric embedding theory with optimal transport

Via

Abstract:We present a theoretical approach to overcome the curse of dimensionality using a neural computation algorithm which can be distributed across several machines. Our modular distributed deep learning paradigm, termed \textit{neural pathways}, can achieve arbitrary accuracy while only loading a small number of parameters into GPU VRAM. Formally, we prove that for every error level $\varepsilon>0$ and every Lipschitz function $f:[0,1]^n\to \mathbb{R}$, one can construct a neural pathways model which uniformly approximates $f$ to $\varepsilon$ accuracy over $[0,1]^n$ while only requiring networks of $\mathcal{O}(\varepsilon^{-1})$ parameters to be loaded in memory and $\mathcal{O}(\varepsilon^{-1}\log(\varepsilon^{-1}))$ to be loaded during the forward pass. This improves the optimal bounds for traditional non-distributed deep learning models, namely ReLU MLPs, which need $\mathcal{O}(\varepsilon^{-n/2})$ parameters to achieve the same accuracy. The only other available deep learning model that breaks the curse of dimensionality is MLPs with super-expressive activation functions. However, we demonstrate that these models have an infinite VC dimension, even with bounded depth and width restrictions, unlike the neural pathways model. This implies that only the latter generalizes. Our analysis is validated experimentally in both regression and classification tasks, demonstrating that our model exhibits superior performance compared to larger centralized benchmarks.

Via

Abstract:We derive new bounds for the condition number of kernel matrices, which we then use to enhance existing non-asymptotic test error bounds for kernel ridgeless regression in the over-parameterized regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound from previous work; for exponential decay, our bound is non-trivial and novel. Our conclusion on overfitting is two-fold: (i) kernel regressors whose eigenspectrum decays polynomially must generalize well, even in the presence of noisy labeled training data; these models exhibit so-called tempered overfitting; (ii) if the eigenspectrum of any kernel ridge regressor decays exponentially, then it generalizes poorly, i.e., it exhibits catastrophic overfitting. This adds to the available characterization of kernel ridge regressors exhibiting benign overfitting as the extremal case where the eigenspectrum of the kernel decays sub-polynomially. Our analysis combines new random matrix theory (RMT) techniques with recent tools in the kernel ridge regression (KRR) literature.

Via

Abstract:Deep Kalman filters (DKFs) are a class of neural network models that generate Gaussian probability measures from sequential data. Though DKFs are inspired by the Kalman filter, they lack concrete theoretical ties to the stochastic filtering problem, thus limiting their applicability to areas where traditional model-based filters have been used, e.g.\ model calibration for bond and option prices in mathematical finance. We address this issue in the mathematical foundations of deep learning by exhibiting a class of continuous-time DKFs which can approximately implement the conditional law of a broad class of non-Markovian and conditionally Gaussian signal processes given noisy continuous-times measurements. Our approximation results hold uniformly over sufficiently regular compact subsets of paths, where the approximation error is quantified by the worst-case 2-Wasserstein distance computed uniformly over the given compact set of paths.

Via

Abstract:The inductive bias of a graph neural network (GNN) is largely encoded in its specified graph. Latent graph inference relies on latent geometric representations to dynamically rewire or infer a GNN's graph to maximize the GNN's predictive downstream performance, but it lacks solid theoretical foundations in terms of embedding-based representation guarantees. This paper addresses this issue by introducing a trainable deep learning architecture, coined neural snowflake, that can adaptively implement fractal-like metrics on $\mathbb{R}^d$. We prove that any given finite weights graph can be isometrically embedded by a standard MLP encoder. Furthermore, when the latent graph can be represented in the feature space of a sufficiently regular kernel, we show that the combined neural snowflake and MLP encoder do not succumb to the curse of dimensionality by using only a low-degree polynomial number of parameters in the number of nodes. This implementation enables a low-dimensional isometric embedding of the latent graph. We conduct synthetic experiments to demonstrate the superior metric learning capabilities of neural snowflakes when compared to more familiar spaces like Euclidean space. Additionally, we carry out latent graph inference experiments on graph benchmarks. Consistently, the neural snowflake model achieves predictive performance that either matches or surpasses that of the state-of-the-art latent graph inference models. Importantly, this performance improvement is achieved without requiring random search for optimal latent geometry. Instead, the neural snowflake model achieves this enhancement in a differentiable manner.

Via