Person re-identification (re-ID) requires densely distributed cameras. In practice, the person of interest may not be captured by cameras and, therefore, needs to be retrieved using subjective information (e.g., sketches from witnesses). Previous research defines this case using the sketch as sketch re-identification (Sketch re-ID) and focuses on eliminating the domain gap. Actually, subjectivity is another significant challenge. We model and investigate it by posing a new dataset with multi-witness descriptions. It features two aspects. 1) Large-scale. It contains over 4,763 sketches and 32,668 photos, making it the largest Sketch re-ID dataset. 2) Multi-perspective and multi-style. Our dataset offers multiple sketches for each identity. Witnesses' subjective cognition provides multiple perspectives on the same individual, while different artists' drawing styles provide variation in sketch styles. We further have two novel designs to alleviate the challenge of subjectivity. 1) Fusing subjectivity. We propose a non-local (NL) fusion module that gathers sketches from different witnesses for the same identity. 2) Introducing objectivity. An AttrAlign module utilizes attributes as an implicit mask to align cross-domain features. To push forward the advance of Sketch re-ID, we set three benchmarks (large-scale, multi-style, cross-style). Extensive experiments demonstrate our leading performance in these benchmarks. Dataset and Codes are publicly available at: https://github.com/Lin-Kayla/subjectivity-sketch-reid
Learning from the limited amount of labeled data to the pre-train model has always been viewed as a challenging task. In this report, an effective and robust solution, the two-stage training paradigm YOLOv8 detector (TP-YOLOv8), is designed for the object detection track in VIPriors Challenge 2023. First, the backbone of YOLOv8 is pre-trained as the encoder using the masked image modeling technique. Then the detector is fine-tuned with elaborate augmentations. During the test stage, test-time augmentation (TTA) is used to enhance each model, and weighted box fusion (WBF) is implemented to further boost the performance. With the well-designed structure, our approach has achieved 30.4% average precision from 0.50 to 0.95 on the DelftBikes test set, ranking 4th on the leaderboard.
This paper introduces a new and challenging Hidden Intention Discovery (HID) task. Unlike existing intention recognition tasks, which are based on obvious visual representations to identify common intentions for normal behavior, HID focuses on discovering hidden intentions when humans try to hide their intentions for abnormal behavior. HID presents a unique challenge in that hidden intentions lack the obvious visual representations to distinguish them from normal intentions. Fortunately, from a sociological and psychological perspective, we find that the difference between hidden and normal intentions can be reasoned from multiple micro-behaviors, such as gaze, attention, and facial expressions. Therefore, we first discover the relationship between micro-behavior and hidden intentions and use graph structure to reason about hidden intentions. To facilitate research in the field of HID, we also constructed a seminal dataset containing a hidden intention annotation of a typical theft scenario for HID. Extensive experiments show that the proposed network improves performance on the HID task by 9.9\% over the state-of-the-art method SBP.
Recently, there has been significant progress in the development of large models. Following the success of ChatGPT, numerous language models have been introduced, demonstrating remarkable performance. Similar advancements have also been observed in image generation models, such as Google's Imagen model, OpenAI's DALL-E 2, and stable diffusion models, which have exhibited impressive capabilities in generating images. However, similar to large language models, these models still encounter unresolved challenges. Fortunately, the availability of open-source stable diffusion models and their underlying mathematical principles has enabled the academic community to extensively analyze the performance of current image generation models and make improvements based on this stable diffusion framework. This survey aims to examine the existing issues and the current solutions pertaining to image generation models.
Early detection of dysplasia of the cervix is critical for cervical cancer treatment. However, automatic cervical dysplasia diagnosis via visual inspection, which is more appropriate in low-resource settings, remains a challenging problem. Though promising results have been obtained by recent deep learning models, their performance is significantly hindered by the limited scale of the available cervix datasets. Distinct from previous methods that learn from a single dataset, we propose to leverage cross-domain cervical images that were collected in different but related clinical studies to improve the model's performance on the targeted cervix dataset. To robustly learn the transferable information across datasets, we propose a novel prototype-based knowledge filtering method to estimate the transferability of cross-domain samples. We further optimize the shared feature space by aligning the cross-domain image representations simultaneously on domain level with early alignment and class level with supervised contrastive learning, which endows model training and knowledge transfer with stronger robustness. The empirical results on three real-world benchmark cervical image datasets show that our proposed method outperforms the state-of-the-art cervical dysplasia visual inspection by an absolute improvement of 4.7% in top-1 accuracy, 7.0% in precision, 1.4% in recall, 4.6% in F1 score, and 0.05 in ROC-AUC.
Underwater images often suffer from color distortion and low contrast resulting in various image types, due to the scattering and absorption of light by water. While it is difficult to obtain high-quality paired training samples with a generalized model. To tackle these challenges, we design a Generalized Underwater image enhancement method via a Physical-knowledge-guided Dynamic Model (short for GUPDM), consisting of three parts: Atmosphere-based Dynamic Structure (ADS), Transmission-guided Dynamic Structure (TDS), and Prior-based Multi-scale Structure (PMS). In particular, to cover complex underwater scenes, this study changes the global atmosphere light and the transmission to simulate various underwater image types (e.g., the underwater image color ranging from yellow to blue) through the formation model. We then design ADS and TDS that use dynamic convolutions to adaptively extract prior information from underwater images and generate parameters for PMS. These two modules enable the network to select appropriate parameters for various water types adaptively. Besides, the multi-scale feature extraction module in PMS uses convolution blocks with different kernel sizes and obtains weights for each feature map via channel attention block and fuses them to boost the receptive field of the network. The source code will be available at \href{https://github.com/shiningZZ/GUPDM}{https://github.com/shiningZZ/GUPDM}.
Domain adaptation is commonly employed in crowd counting to bridge the domain gaps between different datasets. However, existing domain adaptation methods tend to focus on inter-dataset differences while overlooking the intra-differences within the same dataset, leading to additional learning ambiguities. These domain-agnostic factors, e.g., density, surveillance perspective, and scale, can cause significant in-domain variations, and the misalignment of these factors across domains can lead to a drop in performance in cross-domain crowd counting. To address this issue, we propose a Domain-agnostically Aligned Optimal Transport (DAOT) strategy that aligns domain-agnostic factors between domains. The DAOT consists of three steps. First, individual-level differences in domain-agnostic factors are measured using structural similarity (SSIM). Second, the optimal transfer (OT) strategy is employed to smooth out these differences and find the optimal domain-to-domain misalignment, with outlier individuals removed via a virtual "dustbin" column. Third, knowledge is transferred based on the aligned domain-agnostic factors, and the model is retrained for domain adaptation to bridge the gap across domains. We conduct extensive experiments on five standard crowd-counting benchmarks and demonstrate that the proposed method has strong generalizability across diverse datasets. Our code will be available at: https://github.com/HopooLinZ/DAOT/.
We present NNVISR - an open-source filter plugin for the VapourSynth video processing framework, which facilitates the application of neural networks for various kinds of video enhancing tasks, including denoising, super resolution, interpolation, and spatio-temporal super-resolution. NNVISR fills the gap between video enhancement neural networks and video processing pipelines, by accepting any network that enhances a group of frames, and handling all other network agnostic details during video processing. NNVISR is publicly released at https://github.com/tongyuantongyu/vs-NNVISR.
Most existing Low-Light Image Enhancement (LLIE) methods are primarily designed to improve brightness in dark regions, which suffer from severe degradation in nighttime images. However, these methods have limited exploration in another major visibility damage, the glow effects in real night scenes. Glow effects are inevitable in the presence of artificial light sources and cause further diffused blurring when directly enhanced. To settle this issue, we innovatively consider the glow suppression task as learning physical glow generation via multiple scattering estimation according to the Atmospheric Point Spread Function (APSF). In response to the challenges posed by uneven glow intensity and varying source shapes, an APSF-based Nighttime Imaging Model with Near-field Light Sources (NIM-NLS) is specifically derived to design a scalable Light-aware Blind Deconvolution Network (LBDN). The glow-suppressed result is then brightened via a Retinex-based Enhancement Module (REM). Remarkably, the proposed glow suppression method is based on zero-shot learning and does not rely on any paired or unpaired training data. Empirical evaluations demonstrate the effectiveness of the proposed method in both glow suppression and low-light enhancement tasks.
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection. While effective, existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting, due to the co-existence of low-quality pseudo labels and class imbalance issues. In this paper, we address this challenge by proposing a novel ReDB framework tailored for learning to detect all classes at once. Our approach produces Reliable, Diverse, and class-Balanced pseudo 3D boxes to iteratively guide the self-training on a distributionally different target domain. To alleviate disruptions caused by the environmental discrepancy (e.g., beam numbers), the proposed cross-domain examination (CDE) assesses the correctness of pseudo labels by copy-pasting target instances into a source environment and measuring the prediction consistency. To reduce computational overhead and mitigate the object shift (e.g., scales and point densities), we design an overlapped boxes counting (OBC) metric that allows to uniformly downsample pseudo-labeled objects across different geometric characteristics. To confront the issue of inter-class imbalance, we progressively augment the target point clouds with a class-balanced set of pseudo-labeled target instances and source objects, which boosts recognition accuracies on both frequently appearing and rare classes. Experimental results on three benchmark datasets using both voxel-based (i.e., SECOND) and point-based 3D detectors (i.e., PointRCNN) demonstrate that our proposed ReDB approach outperforms existing 3D domain adaptation methods by a large margin, improving 23.15% mAP on the nuScenes $\rightarrow$ KITTI task.