Abstract:This study explores the potential of off-the-shelf Vision-Language Models (VLMs) for high-level robot planning in the context of autonomous navigation. Indeed, while most of existing learning-based approaches for path planning require extensive task-specific training/fine-tuning, we demonstrate how such training can be avoided for most practical cases. To do this, we introduce Select2Plan (S2P), a novel training-free framework for high-level robot planning which completely eliminates the need for fine-tuning or specialised training. By leveraging structured Visual Question-Answering (VQA) and In-Context Learning (ICL), our approach drastically reduces the need for data collection, requiring a fraction of the task-specific data typically used by trained models, or even relying only on online data. Our method facilitates the effective use of a generally trained VLM in a flexible and cost-efficient way, and does not require additional sensing except for a simple monocular camera. We demonstrate its adaptability across various scene types, context sources, and sensing setups. We evaluate our approach in two distinct scenarios: traditional First-Person View (FPV) and infrastructure-driven Third-Person View (TPV) navigation, demonstrating the flexibility and simplicity of our method. Our technique significantly enhances the navigational capabilities of a baseline VLM of approximately 50% in TPV scenario, and is comparable to trained models in the FPV one, with as few as 20 demonstrations.
Abstract:One of the most challenging forms of misinformation involves the out-of-context (OOC) use of images paired with misleading text, creating false narratives. Existing AI-driven detection systems lack explainability and require expensive fine-tuning. We address these issues with MAD-Sherlock: a Multi-Agent Debate system for OOC Misinformation Detection. MAD-Sherlock introduces a novel multi-agent debate framework where multimodal agents collaborate to assess contextual consistency and request external information to enhance cross-context reasoning and decision-making. Our framework enables explainable detection with state-of-the-art accuracy even without domain-specific fine-tuning. Extensive ablation studies confirm that external retrieval significantly improves detection accuracy, and user studies demonstrate that MAD-Sherlock boosts performance for both experts and non-experts. These results position MAD-Sherlock as a powerful tool for autonomous and citizen intelligence applications.
Abstract:Communication is a prerequisite for collaboration. When scaling networks of AI-powered agents, communication must be versatile, efficient, and portable. These requisites, which we refer to as the Agent Communication Trilemma, are hard to achieve in large networks of agents. We introduce Agora, a meta protocol that leverages existing communication standards to make LLM-powered agents solve complex problems efficiently. In Agora, agents typically use standardised routines for frequent communications, natural language for rare communications, and LLM-written routines for everything in between. Agora sidesteps the Agent Communication Trilemma and robustly handles changes in interfaces and members, allowing unprecedented scalability with full decentralisation and minimal involvement of human beings. On large Agora networks, we observe the emergence of self-organising, fully automated protocols that achieve complex goals without human intervention.
Abstract:AI alignment is a pivotal issue concerning AI control and safety. It should consider not only value-neutral human preferences but also moral and ethical considerations. In this study, we introduced FairMindSim, which simulates the moral dilemma through a series of unfair scenarios. We used LLM agents to simulate human behavior, ensuring alignment across various stages. To explore the various socioeconomic motivations, which we refer to as beliefs, that drive both humans and LLM agents as bystanders to intervene in unjust situations involving others, and how these beliefs interact to influence individual behavior, we incorporated knowledge from relevant sociological fields and proposed the Belief-Reward Alignment Behavior Evolution Model (BREM) based on the recursive reward model (RRM). Our findings indicate that, behaviorally, GPT-4o exhibits a stronger sense of social justice, while humans display a richer range of emotions. Additionally, we discussed the potential impact of emotions on behavior. This study provides a theoretical foundation for applications in aligning LLMs with altruistic values.
Abstract:Animal pose estimation (APE) aims to locate the animal body parts using a diverse array of sensor and modality inputs, which is crucial for research across neuroscience, biomechanics, and veterinary medicine. By evaluating 178 papers since 2013, APE methods are categorised by sensor and modality types, learning paradigms, experimental setup, and application domains, presenting detailed analyses of current trends, challenges, and future directions in single- and multi-modality APE systems. The analysis also highlights the transition between human and animal pose estimation. Additionally, 2D and 3D APE datasets and evaluation metrics based on different sensors and modalities are provided. A regularly updated project page is provided here: https://github.com/ChennyDeng/MM-APE.
Abstract:Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To address this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 21 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not inherently enhance resilience against poisoning attacks; (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.
Abstract:Generating high-quality 3D assets from textual descriptions remains a pivotal challenge in computer graphics and vision research. Due to the scarcity of 3D data, state-of-the-art approaches utilize pre-trained 2D diffusion priors, optimized through Score Distillation Sampling (SDS). Despite progress, crafting complex 3D scenes featuring multiple objects or intricate interactions is still difficult. To tackle this, recent methods have incorporated box or layout guidance. However, these layout-guided compositional methods often struggle to provide fine-grained control, as they are generally coarse and lack expressiveness. To overcome these challenges, we introduce a novel SDS approach, Semantic Score Distillation Sampling (SemanticSDS), designed to effectively improve the expressiveness and accuracy of compositional text-to-3D generation. Our approach integrates new semantic embeddings that maintain consistency across different rendering views and clearly differentiate between various objects and parts. These embeddings are transformed into a semantic map, which directs a region-specific SDS process, enabling precise optimization and compositional generation. By leveraging explicit semantic guidance, our method unlocks the compositional capabilities of existing pre-trained diffusion models, thereby achieving superior quality in 3D content generation, particularly for complex objects and scenes. Experimental results demonstrate that our SemanticSDS framework is highly effective for generating state-of-the-art complex 3D content. Code: https://github.com/YangLing0818/SemanticSDS-3D
Abstract:The rapid proliferation of AI-manipulated or generated audio deepfakes poses serious challenges to media integrity and election security. Current AI-driven detection solutions lack explainability and underperform in real-world settings. In this paper, we introduce novel explainability methods for state-of-the-art transformer-based audio deepfake detectors and open-source a novel benchmark for real-world generalizability. By narrowing the explainability gap between transformer-based audio deepfake detectors and traditional methods, our results not only build trust with human experts, but also pave the way for unlocking the potential of citizen intelligence to overcome the scalability issue in audio deepfake detection.
Abstract:We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.
Abstract:A key challenge in interpretability is to decompose model activations into meaningful features. Sparse autoencoders (SAEs) have emerged as a promising tool for this task. However, a central problem in evaluating the quality of SAEs is the absence of ground truth features to serve as an evaluation gold standard. Current evaluation methods for SAEs are therefore confronted with a significant trade-off: SAEs can either leverage toy models or other proxies with predefined ground truth features; or they use extensive prior knowledge of realistic task circuits. The former limits the generalizability of the evaluation results, while the latter limits the range of models and tasks that can be used for evaluations. We introduce SAGE: Scalable Autoencoder Ground-truth Evaluation, a ground truth evaluation framework for SAEs that scales to large state-of-the-art SAEs and models. We demonstrate that our method can automatically identify task-specific activations and compute ground truth features at these points. Compared to previous methods we reduce the training overhead by introducing a novel reconstruction method that allows to apply residual stream SAEs to sublayer activations. This eliminates the need for SAEs trained on every task-specific activation location. Then we validate the scalability of our framework, by evaluating SAEs on novel tasks on Pythia70M, GPT-2 Small, and Gemma-2-2. Our framework therefore paves the way for generalizable, large-scale evaluations of SAEs in interpretability research.