Shammie
Abstract:Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.
Abstract:Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
Abstract:Real-world objects are composed of distinctive, object-specific parts. Identifying these parts is key to performing fine-grained, compositional reasoning-yet, large multimodal models (LMMs) struggle to perform this seemingly straightforward task. In this work, we introduce PARTONOMY, an LMM benchmark designed for pixel-level part grounding. We construct PARTONOMY from existing part datasets and our own rigorously annotated set of images, encompassing 862 part labels and 534 object labels for evaluation. Unlike existing datasets that simply ask models to identify generic parts, PARTONOMY uses specialized concepts (e.g., agricultural airplane), and challenges models to compare objects' parts, consider part-whole relationships, and justify textual predictions with visual segmentations. Our experiments demonstrate significant limitations in state-of-the-art LMMs (e.g., LISA-13B achieves only 5.9% gIoU), highlighting a critical gap in their part grounding abilities. We note that existing segmentation-enabled LMMs (segmenting LMMs) have two key architectural shortcomings: they use special [SEG] tokens not seen during pretraining which induce distribution shift, and they discard predicted segmentations instead of using past predictions to guide future ones. To address these deficiencies, we train several part-centric LMMs and propose PLUM, a novel segmenting LMM that uses span tagging instead of segmentation tokens and that conditions on prior predictions in a feedback loop. We find that pretrained PLUM outperforms existing segmenting LMMs on reasoning segmentation, VQA, and visual hallucination benchmarks. In addition, PLUM finetuned on our proposed Explanatory Part Segmentation task is competitive with segmenting LMMs trained on significantly more segmentation data. Our work opens up new avenues towards enabling fine-grained, grounded visual understanding in LMMs.
Abstract:Large language models (LLMs) still struggle across tasks outside of high-resource languages. In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce. Building on prior work, we first validate that the subsets of model parameters that matter most for mathematical reasoning and multilingual capabilities are distinctly non-overlapping. To exploit this implicit separability between task and target language parameterization, we develop and analyze numerous modular frameworks to improve the composition of the two during fine-tuning. These methods generally employ freezing parameters or post hoc model merging to assign math and language improvement to different key parts of the LLM. In the absence of in-language math data, we demonstrate that the modular approaches successfully improve upon baselines across three languages, four models, and two fine-tuning paradigms (full and LoRA). Furthermore, we identify the most consistently successful modular method to be fine-tuning separate language and math experts and model merging via Layer-Swapping, somewhat surprisingly. We offer possible explanations for this result via recent works on the linearity of task vectors. We further explain this by empirically showing that reverting less useful fine-tuning updates after training often outperforms freezing them from the start.
Abstract:Large vision-language models (LVLMs) are increasingly deployed in globally distributed applications, such as tourism assistants, yet their ability to produce culturally appropriate responses remains underexplored. Existing multimodal safety benchmarks primarily focus on physical safety and overlook violations rooted in cultural norms, which can result in symbolic harm. To address this gap, we introduce CROSS, a benchmark designed to assess the cultural safety reasoning capabilities of LVLMs. CROSS includes 1,284 multilingual visually grounded queries from 16 countries, three everyday domains, and 14 languages, where cultural norm violations emerge only when images are interpreted in context. We propose CROSS-Eval, an intercultural theory-based framework that measures four key dimensions: cultural awareness, norm education, compliance, and helpfulness. Using this framework, we evaluate 21 leading LVLMs, including mixture-of-experts models and reasoning models. Results reveal significant cultural safety gaps: the best-performing model achieves only 61.79% in awareness and 37.73% in compliance. While some open-source models reach GPT-4o-level performance, they still fall notably short of proprietary models. Our results further show that increasing reasoning capacity improves cultural alignment but does not fully resolve the issue. To improve model performance, we develop two enhancement strategies: supervised fine-tuning with culturally grounded, open-ended data and preference tuning with contrastive response pairs that highlight safe versus unsafe behaviors. These methods substantially improve GPT-4o's cultural awareness (+60.14%) and compliance (+55.2%), while preserving general multimodal capabilities with minimal performance reduction on general multimodal understanding benchmarks.
Abstract:Watermarking AI-generated text is critical for combating misuse. Yet recent theoretical work argues that any watermark can be erased via random walk attacks that perturb text while preserving quality. However, such attacks rely on two key assumptions: (1) rapid mixing (watermarks dissolve quickly under perturbations) and (2) reliable quality preservation (automated quality oracles perfectly guide edits). Through large-scale experiments and human-validated assessments, we find mixing is slow: 100% of perturbed texts retain traces of their origin after hundreds of edits, defying rapid mixing. Oracles falter, as state-of-the-art quality detectors misjudge edits (77% accuracy), compounding errors during attacks. Ultimately, attacks underperform: automated walks remove watermarks just 26% of the time -- dropping to 10% under human quality review. These findings challenge the inevitability of watermark removal. Instead, practical barriers -- slow mixing and imperfect quality control -- reveal watermarking to be far more robust than theoretical models suggest. The gap between idealized attacks and real-world feasibility underscores the need for stronger watermarking methods and more realistic attack models.
Abstract:Peer review at AI conferences is stressed by rapidly rising submission volumes, leading to deteriorating review quality and increased author dissatisfaction. To address these issues, we developed Review Feedback Agent, a system leveraging multiple large language models (LLMs) to improve review clarity and actionability by providing automated feedback on vague comments, content misunderstandings, and unprofessional remarks to reviewers. Implemented at ICLR 2025 as a large randomized control study, our system provided optional feedback to more than 20,000 randomly selected reviews. To ensure high-quality feedback for reviewers at this scale, we also developed a suite of automated reliability tests powered by LLMs that acted as guardrails to ensure feedback quality, with feedback only being sent to reviewers if it passed all the tests. The results show that 27% of reviewers who received feedback updated their reviews, and over 12,000 feedback suggestions from the agent were incorporated by those reviewers. This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers. Moreover, reviewers who were selected to receive AI feedback were also more engaged during paper rebuttals, as seen in longer author-reviewer discussions. This work demonstrates that carefully designed LLM-generated review feedback can enhance peer review quality by making reviews more specific and actionable while increasing engagement between reviewers and authors. The Review Feedback Agent is publicly available at https://github.com/zou-group/review_feedback_agent.
Abstract:Selective retrieval improves retrieval-augmented generation (RAG) by reducing distractions from low-quality retrievals and improving efficiency. However, existing approaches under-utilize the inherent knowledge of large language models (LLMs), leading to suboptimal retrieval decisions and degraded generation performance. To bridge this gap, we propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization. SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge. To this end, we design a multi-task objective that jointly optimizes an LLM on knowledge source selection, knowledge verbalization, and response generation. We further introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision under domain shifts. Fine-tuning three LLMs with SR-RAG significantly improves both their response accuracy and inference latency. Compared to the strongest selective retrieval baseline, SR-RAG reduces retrievals by 29% while improving the performance by 5.1%.
Abstract:Recent advancements demonstrated by DeepSeek-R1 have shown that complex reasoning abilities in large language models (LLMs), including sophisticated behaviors such as self-verification and self-correction, can be achieved by RL with verifiable rewards and significantly improves model performance on challenging tasks such as AIME. Motivated by these findings, our study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs) and assesses their impact on challenging multimodal reasoning tasks. We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization. Initially, reasoning capabilities were distilled from pure-text R1 models by generating reasoning steps using high-quality captions of the images sourced from diverse visual datasets. Subsequently, iterative RL training further enhance reasoning skills, with each iteration's RL-improved model generating refined SFT datasets for the next round. This iterative process yielded OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrating the potential of our strategy for robust vision-language reasoning. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.
Abstract:Evaluating creative text such as human-written stories using language models has always been a challenging task -- owing to the subjectivity of multi-annotator ratings. To mimic the thinking process of humans, chain of thought (CoT) generates free-text explanations that help guide a model's predictions and Self-Consistency (SC) marginalizes predictions over multiple generated explanations. In this study, we discover that the widely-used self-consistency reasoning methods cause suboptimal results due to an objective mismatch between generating 'fluent-looking' explanations vs. actually leading to a good rating prediction for an aspect of a story. To overcome this challenge, we propose $\textbf{C}$hain-$\textbf{o}$f-$\textbf{Ke}$ywords (CoKe), that generates a sequence of keywords $\textit{before}$ generating a free-text rationale, that guide the rating prediction of our evaluation language model. Then, we generate a diverse set of such keywords, and aggregate the scores corresponding to these generations. On the StoryER dataset, CoKe based on our small fine-tuned evaluation models not only reach human-level performance and significantly outperform GPT-4 with a 2x boost in correlation with human annotators, but also requires drastically less number of parameters.