Alert button
Picture for Yonatan Bitton

Yonatan Bitton

Alert button

VideoCon: Robust Video-Language Alignment via Contrast Captions

Nov 15, 2023
Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang, Aditya Grover

Despite being (pre)trained on a massive amount of data, state-of-the-art video-language alignment models are not robust to semantically-plausible contrastive changes in the video captions. Our work addresses this by identifying a broad spectrum of contrast misalignments, such as replacing entities, actions, and flipping event order, which alignment models should be robust against. To this end, we introduce the VideoCon, a video-language alignment dataset constructed by a large language model that generates plausible contrast video captions and explanations for differences between original and contrast video captions. Then, a generative video-language model is finetuned with VideoCon to assess video-language entailment and generate explanations. Our VideoCon-based alignment model significantly outperforms current models. It exhibits a 12-point increase in AUC for the video-language alignment task on human-generated contrast captions. Finally, our model sets new state of the art zero-shot performance in temporally-extensive video-language tasks such as text-to-video retrieval (SSv2-Temporal) and video question answering (ATP-Hard). Moreover, our model shows superior performance on novel videos and human-crafted captions and explanations. Our code and data are available at https://github.com/Hritikbansal/videocon.

* 22 pages, 19 Figures, 7 Tables 
Viaarxiv icon

VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use

Aug 12, 2023
Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin Shao, Wanrong Zhu, Anas Awadalla, Josh Gardner, Rohan Taori, Ludwig Schimdt

Figure 1 for VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
Figure 2 for VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
Figure 3 for VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
Figure 4 for VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use

We introduce VisIT-Bench (Visual InsTruction Benchmark), a benchmark for evaluation of instruction-following vision-language models for real-world use. Our starting point is curating 70 'instruction families' that we envision instruction tuned vision-language models should be able to address. Extending beyond evaluations like VQAv2 and COCO, tasks range from basic recognition to game playing and creative generation. Following curation, our dataset comprises 592 test queries, each with a human-authored instruction-conditioned caption. These descriptions surface instruction-specific factors, e.g., for an instruction asking about the accessibility of a storefront for wheelchair users, the instruction-conditioned caption describes ramps/potential obstacles. These descriptions enable 1) collecting human-verified reference outputs for each instance; and 2) automatic evaluation of candidate multimodal generations using a text-only LLM, aligning with human judgment. We quantify quality gaps between models and references using both human and automatic evaluations; e.g., the top-performing instruction-following model wins against the GPT-4 reference in just 27% of the comparison. VisIT-Bench is dynamic to participate, practitioners simply submit their model's response on the project website; Data, code and leaderboard is available at visit-bench.github.io.

Viaarxiv icon

OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models

Aug 07, 2023
Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, Ludwig Schmidt

Figure 1 for OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models
Figure 2 for OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models
Figure 3 for OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models
Figure 4 for OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models

We introduce OpenFlamingo, a family of autoregressive vision-language models ranging from 3B to 9B parameters. OpenFlamingo is an ongoing effort to produce an open-source replication of DeepMind's Flamingo models. On seven vision-language datasets, OpenFlamingo models average between 80 - 89% of corresponding Flamingo performance. This technical report describes our models, training data, hyperparameters, and evaluation suite. We share our models and code at https://github.com/mlfoundations/open_flamingo.

Viaarxiv icon

Read, Look or Listen? What's Needed for Solving a Multimodal Dataset

Jul 06, 2023
Netta Madvil, Yonatan Bitton, Roy Schwartz

Figure 1 for Read, Look or Listen? What's Needed for Solving a Multimodal Dataset
Figure 2 for Read, Look or Listen? What's Needed for Solving a Multimodal Dataset
Figure 3 for Read, Look or Listen? What's Needed for Solving a Multimodal Dataset
Figure 4 for Read, Look or Listen? What's Needed for Solving a Multimodal Dataset

The prevalence of large-scale multimodal datasets presents unique challenges in assessing dataset quality. We propose a two-step method to analyze multimodal datasets, which leverages a small seed of human annotation to map each multimodal instance to the modalities required to process it. Our method sheds light on the importance of different modalities in datasets, as well as the relationship between them. We apply our approach to TVQA, a video question-answering dataset, and discover that most questions can be answered using a single modality, without a substantial bias towards any specific modality. Moreover, we find that more than 70% of the questions are solvable using several different single-modality strategies, e.g., by either looking at the video or listening to the audio, highlighting the limited integration of multiple modalities in TVQA. We leverage our annotation and analyze the MERLOT Reserve, finding that it struggles with image-based questions compared to text and audio, but also with auditory speaker identification. Based on our observations, we introduce a new test set that necessitates multiple modalities, observing a dramatic drop in model performance. Our methodology provides valuable insights into multimodal datasets and highlights the need for the development of more robust models.

Viaarxiv icon

What You See is What You Read? Improving Text-Image Alignment Evaluation

May 22, 2023
Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang, Eran Ofek, Idan Szpektor

Figure 1 for What You See is What You Read? Improving Text-Image Alignment Evaluation
Figure 2 for What You See is What You Read? Improving Text-Image Alignment Evaluation
Figure 3 for What You See is What You Read? Improving Text-Image Alignment Evaluation
Figure 4 for What You See is What You Read? Improving Text-Image Alignment Evaluation

Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic text-image alignment evaluation. We first introduce SeeTRUE: a comprehensive evaluation set, spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach by finetuning multimodal pretrained models. Both methods surpass prior approaches in various text-image alignment tasks, with significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.

Viaarxiv icon

DataComp: In search of the next generation of multimodal datasets

May 03, 2023
Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt

Figure 1 for DataComp: In search of the next generation of multimodal datasets
Figure 2 for DataComp: In search of the next generation of multimodal datasets
Figure 3 for DataComp: In search of the next generation of multimodal datasets
Figure 4 for DataComp: In search of the next generation of multimodal datasets

Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.

Viaarxiv icon

q2d: Turning Questions into Dialogs to Teach Models How to Search

Apr 27, 2023
Yonatan Bitton, Shlomi Cohen-Ganor, Ido Hakimi, Yoad Lewenberg, Roee Aharoni, Enav Weinreb

Figure 1 for q2d: Turning Questions into Dialogs to Teach Models How to Search
Figure 2 for q2d: Turning Questions into Dialogs to Teach Models How to Search
Figure 3 for q2d: Turning Questions into Dialogs to Teach Models How to Search
Figure 4 for q2d: Turning Questions into Dialogs to Teach Models How to Search

One of the exciting capabilities of recent language models for dialog is their ability to independently search for relevant information to ground a given dialog response. However, obtaining training data to teach models how to issue search queries is time and resource consuming. In this work, we propose q2d: an automatic data generation pipeline that generates information-seeking dialogs from questions. We prompt a large language model (PaLM) to create conversational versions of question answering datasets, and use it to improve query generation models that communicate with external search APIs to ground dialog responses. Unlike previous approaches which relied on human written dialogs with search queries, our method allows to automatically generate query-based grounded dialogs with better control and scale. Our experiments demonstrate that: (1) For query generation on the QReCC dataset, models trained on our synthetically-generated data achieve 90%--97% of the performance of models trained on the human-generated data; (2) We can successfully generate data for training dialog models in new domains without any existing dialog data as demonstrated on the multi-hop MuSiQue and Bamboogle QA datasets. (3) We perform a thorough analysis of the generated dialogs showing that humans find them of high quality and struggle to distinguish them from human-written dialogs.

Viaarxiv icon

IRFL: Image Recognition of Figurative Language

Mar 27, 2023
Ron Yosef, Yonatan Bitton, Dafna Shahaf

Figure 1 for IRFL: Image Recognition of Figurative Language
Figure 2 for IRFL: Image Recognition of Figurative Language
Figure 3 for IRFL: Image Recognition of Figurative Language
Figure 4 for IRFL: Image Recognition of Figurative Language

Figures of speech such as metaphors, similes, and idioms allow language to be expressive, invoke emotion, and communicate abstract ideas that might otherwise be difficult to visualize. These figurative forms are often conveyed through multiple modes, such as text and images, and frequently appear in advertising, news, social media, etc. Understanding multimodal figurative language is an essential component of human communication, and it plays a significant role in our daily interactions. While humans can intuitively understand multimodal figurative language, this poses a challenging task for machines that requires the cognitive ability to map between domains, abstraction, commonsense, and profound language and cultural knowledge. In this work, we propose the Image Recognition of Figurative Language dataset to examine vision and language models' understanding of figurative language. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset and introduce two novel tasks as a benchmark for multimodal figurative understanding. We experiment with several baseline models and find that all perform substantially worse than humans. We hope our dataset and benchmark will drive the development of models that will better understand figurative language.

Viaarxiv icon