Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Discovering the underlying relationships among variables from temporal observations has been a longstanding challenge in numerous scientific disciplines, including biology, finance, and climate science. The dynamics of such systems are often best described using continuous-time stochastic processes. Unfortunately, most existing structure learning approaches assume that the underlying process evolves in discrete-time and/or observations occur at regular time intervals. These mismatched assumptions can often lead to incorrect learned structures and models. In this work, we introduce a novel structure learning method, SCOTCH, which combines neural stochastic differential equations (SDE) with variational inference to infer a posterior distribution over possible structures. This continuous-time approach can naturally handle both learning from and predicting observations at arbitrary time points. Theoretically, we establish sufficient conditions for an SDE and SCOTCH to be structurally identifiable, and prove its consistency under infinite data limits. Empirically, we demonstrate that our approach leads to improved structure learning performance on both synthetic and real-world datasets compared to relevant baselines under regular and irregular sampling intervals.

Via

Figures and Tables:

Abstract:Neural network verification mainly focuses on local robustness properties. However, often it is important to know whether a given property holds globally for the whole input domain, and if not then for what proportion of the input the property is true. While exact preimage generation can construct an equivalent representation of neural networks that can aid such (quantitative) global robustness verification, it is intractable at scale. In this work, we propose an efficient and practical anytime algorithm for generating symbolic under-approximations of the preimage of neural networks based on linear relaxation. Our algorithm iteratively minimizes the volume approximation error by partitioning the input region into subregions, where the neural network relaxation bounds become tighter. We further employ sampling and differentiable approximations to the volume in order to prioritize regions to split and optimize the parameters of the relaxation, leading to faster improvement and more compact under-approximations. Evaluation results demonstrate that our approach is able to generate preimage approximations significantly faster than exact methods and scales to neural network controllers for which exact preimage generation is intractable. We also demonstrate an application of our approach to quantitative global verification.

Via

Figures and Tables:

Abstract:Probabilistic circuits (PCs) are a class of tractable probabilistic models, which admit efficient inference routines depending on their structural properties. In this paper, we introduce md-vtrees, a novel structural formulation of (marginal) determinism in structured decomposable PCs, which generalizes previously proposed classes such as probabilistic sentential decision diagrams. Crucially, we show how mdvtrees can be used to derive tractability conditions and efficient algorithms for advanced inference queries expressed as arbitrary compositions of basic probabilistic operations, such as marginalization, multiplication and reciprocals, in a sound and generalizable manner. In particular, we derive the first polytime algorithms for causal inference queries such as backdoor adjustment on PCs. As a practical instantiation of the framework, we propose MDNets, a novel PC architecture using md-vtrees, and empirically demonstrate their application to causal inference.

Via

Figures and Tables:

Abstract:This report summarises the outcomes of a systematic literature search to identify Bayesian network models used to support decision making in healthcare. After describing the search methodology, the selected research papers are briefly reviewed, with the view to identify publicly available models and datasets that are well suited to analysis using the causal interventional analysis software tool developed in Wang B, Lyle C, Kwiatkowska M (2021). Finally, an experimental evaluation of applying the software on a selection of models is carried out and preliminary results are reported.

Via

Figures and Tables:

Abstract:In many domains, worst-case guarantees on the performance (e.g., prediction accuracy) of a decision function subject to distributional shifts and uncertainty about the environment are crucial. In this work we develop a method to quantify the robustness of decision functions with respect to credal Bayesian networks, formal parametric models of the environment where uncertainty is expressed through credal sets on the parameters. In particular, we address the maximum marginal probability (MARmax) problem, that is, determining the greatest probability of an event (such as misclassification) obtainable for parameters in the credal set. We develop a method to faithfully transfer the problem into a constrained optimization problem on a probabilistic circuit. By performing a simple constraint relaxation, we show how to obtain a guaranteed upper bound on MARmax in linear time in the size of the circuit. We further theoretically characterize this constraint relaxation in terms of the original Bayesian network structure, which yields insight into the tightness of the bound. We implement the method and provide experimental evidence that the upper bound is often near tight and demonstrates improved scalability compared to other methods.

Via

Figures and Tables:

Abstract:Bayesian structure learning allows one to capture uncertainty over the causal directed acyclic graph (DAG) responsible for generating given data. In this work, we present Tractable Uncertainty for STructure learning (TRUST), a framework for approximate posterior inference that relies on probabilistic circuits as the representation of our posterior belief. In contrast to sample-based posterior approximations, our representation can capture a much richer space of DAGs, while being able to tractably answer a range of useful inference queries. We empirically show how probabilistic circuits can be used as an augmented representation for structure learning methods, leading to improvement in both the quality of inferred structures and posterior uncertainty. Experimental results also demonstrate the improved representational capacity of TRUST, outperforming competing methods on conditional query answering.

Via

Figures and Tables:

Abstract:Robustness of decision rules to shifts in the data-generating process is crucial to the successful deployment of decision-making systems. Such shifts can be viewed as interventions on a causal graph, which capture (possibly hypothetical) changes in the data-generating process, whether due to natural reasons or by the action of an adversary. We consider causal Bayesian networks and formally define the interventional robustness problem, a novel model-based notion of robustness for decision functions that measures worst-case performance with respect to a set of interventions that denote changes to parameters and/or causal influences. By relying on a tractable representation of Bayesian networks as arithmetic circuits, we provide efficient algorithms for computing guaranteed upper and lower bounds on the interventional robustness probabilities. Experimental results demonstrate that the methods yield useful and interpretable bounds for a range of practical networks, paving the way towards provably causally robust decision-making systems.

Via

Figures and Tables:

Abstract:Neural network NLP models are vulnerable to small modifications of the input that maintain the original meaning but result in a different prediction. In this paper, we focus on robustness of text classification against word substitutions, aiming to provide guarantees that the model prediction does not change if a word is replaced with a plausible alternative, such as a synonym. As a measure of robustness, we adopt the notion of the maximal safe radius for a given input text, which is the minimum distance in the embedding space to the decision boundary. Since computing the exact maximal safe radius is not feasible in practice, we instead approximate it by computing a lower and upper bound. For the upper bound computation, we employ Monte Carlo Tree Search in conjunction with syntactic filtering to analyse the effect of single and multiple word substitutions. The lower bound computation is achieved through an adaptation of the linear bounding techniques implemented in tools CNN-Cert and POPQORN, respectively for convolutional and recurrent network models. We evaluate the methods on sentiment analysis and news classification models for four datasets (IMDB, SST, AG News and NEWS) and a range of embeddings, and provide an analysis of robustness trends. We also apply our framework to interpretability analysis and compare it with LIME.

Via

Figures and Tables:

Abstract:Recently there has been much interest in quantifying the robustness of neural network classifiers through adversarial risk metrics. However, for problems where test-time corruptions occur in a probabilistic manner, rather than being generated by an explicit adversary, adversarial metrics typically do not provide an accurate or reliable indicator of robustness. To address this, we introduce a statistically robust risk (SRR) framework which measures robustness in expectation over both network inputs and a corruption distribution. Unlike many adversarial risk metrics, which typically require separate applications on a point-by-point basis, the SRR can easily be directly estimated for an entire network and used as a training objective in a stochastic gradient scheme. Furthermore, we show both theoretically and empirically that it can scale to higher-dimensional networks by providing superior generalization performance compared with comparable adversarial risks.

Via