Abstract:Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose an large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative.
Abstract:Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.
Abstract:Image generation models can generate or edit images from a given text. Recent advancements in image generation technology, exemplified by DALL-E and Midjourney, have been groundbreaking. These advanced models, despite their impressive capabilities, are often trained on massive Internet datasets, making them susceptible to generating content that perpetuates social stereotypes and biases, which can lead to severe consequences. Prior research on assessing bias within image generation models suffers from several shortcomings, including limited accuracy, reliance on extensive human labor, and lack of comprehensive analysis. In this paper, we propose BiasPainter, a novel metamorphic testing framework that can accurately, automatically and comprehensively trigger social bias in image generation models. BiasPainter uses a diverse range of seed images of individuals and prompts the image generation models to edit these images using gender, race, and age-neutral queries. These queries span 62 professions, 39 activities, 57 types of objects, and 70 personality traits. The framework then compares the edited images to the original seed images, focusing on any changes related to gender, race, and age. BiasPainter adopts a testing oracle that these characteristics should not be modified when subjected to neutral prompts. Built upon this design, BiasPainter can trigger the social bias and evaluate the fairness of image generation models. To evaluate the effectiveness of BiasPainter, we use BiasPainter to test five widely-used commercial image generation software and models, such as stable diffusion and Midjourney. Experimental results show that 100\% of the generated test cases can successfully trigger social bias in image generation models.
Abstract:Ensuring factual consistency is crucial in various natural language processing tasks, particularly in abstractive summarization, where preserving the integrity of information is paramount. Prior entailment-based approaches often generate factually inconsistent summaries and then train a classifier on the generated data. However, summaries produced by these approaches are either of low coherence or lack error-type coverage. To address these issues, we propose AMRFact, a novel framework that generates factually inconsistent summaries using Abstract Meaning Representation (AMR). Our approach parses factually correct summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage. Additionally, we present a data selection module NegFilter based on natural language inference and BARTScore to ensure the quality of the generated negative samples. Experimental results demonstrate that our approach significantly outperforms previous systems on the AggreFact-SOTA dataset, showcasing its efficacy in assessing factuality in abstractive summarization.
Abstract:Pretrained model-based evaluation metrics have demonstrated strong performance with high correlations with human judgments in various natural language generation tasks such as image captioning. Despite the impressive results, their impact on fairness is under-explored -- it is widely acknowledged that pretrained models can encode societal biases, and utilizing them for evaluation purposes may inadvertently manifest and potentially amplify biases. In this paper, we conduct a systematic study in gender biases of model-based evaluation metrics with a focus on image captioning tasks. Specifically, we first identify and quantify gender biases in different evaluation metrics regarding profession, activity, and object concepts. Then, we demonstrate the negative consequences of using these biased metrics, such as favoring biased generation models in deployment and propagating the biases to generation models through reinforcement learning. We also present a simple but effective alternative to reduce gender biases by combining n-gram matching-based and pretrained model-based evaluation metrics.