Abstract:Under extreme low-light conditions, traditional frame-based cameras, due to their limited dynamic range and temporal resolution, face detail loss and motion blur in captured images. To overcome this bottleneck, researchers have introduced event cameras and proposed event-guided low-light image enhancement algorithms. However, these methods neglect the influence of global low-frequency noise caused by dynamic lighting conditions and local structural discontinuities in sparse event data. To address these issues, we propose an innovative Bidirectional guided Low-light Image Enhancement framework (BiLIE). Specifically, to mitigate the significant low-frequency noise introduced by global illumination step changes, we introduce the frequency high-pass filtering-based Event Feature Enhancement (EFE) module at the event representation level to suppress the interference of low-frequency information, and preserve and highlight the high-frequency edges.Furthermore, we design a Bidirectional Cross Attention Fusion (BCAF) mechanism to acquire high-frequency structures and edges while suppressing structural discontinuities and local noise introduced by sparse event guidance, thereby generating smoother fused representations.Additionally, considering the poor visual quality and color bias in existing datasets, we provide a new dataset (RELIE), with high-quality ground truth through a reliable enhancement scheme. Extensive experimental results demonstrate that our proposed BiLIE outperforms state-of-the-art methods by 0.96dB in PSNR and 0.03 in LPIPS.
Abstract:This work studies near-field secure communications through transmit beamfocusing. We examine the benefit of having a protected eavesdropper-free zone around the legitimate receiver, and we determine the worst-case secrecy performance against a potential eavesdropper located anywhere outside the protected zone. A max-min optimization problem is formulated for the beamfocusing design with and without artificial noise transmission. Despite the NP-hardness of the problem, we develop a synchronous gradient descent-ascent framework that approximates the global maximin solution. A low-complexity solution is also derived that delivers excellent performance over a wide range of operating conditions. We further extend this study to a scenario where it is not possible to physically enforce a protected zone. To this end, we consider secure communications through the creation of a virtual protected zone using a full-duplex legitimate receiver. Numerical results demonstrate that exploiting either the physical or virtual receiver-centered protected zone with appropriately designed beamfocusing is an effective strategy for achieving secure near-field communications.
Abstract:In this paper, we question whether we have a reliable self-supervised point cloud model that can be used for diverse 3D tasks via simple linear probing, even with limited data and minimal computation. We find that existing 3D self-supervised learning approaches fall short when evaluated on representation quality through linear probing. We hypothesize that this is due to what we term the "geometric shortcut", which causes representations to collapse to low-level spatial features. This challenge is unique to 3D and arises from the sparse nature of point cloud data. We address it through two key strategies: obscuring spatial information and enhancing the reliance on input features, ultimately composing a Sonata of 140k point clouds through self-distillation. Sonata is simple and intuitive, yet its learned representations are strong and reliable: zero-shot visualizations demonstrate semantic grouping, alongside strong spatial reasoning through nearest-neighbor relationships. Sonata demonstrates exceptional parameter and data efficiency, tripling linear probing accuracy (from 21.8% to 72.5%) on ScanNet and nearly doubling performance with only 1% of the data compared to previous approaches. Full fine-tuning further advances SOTA across both 3D indoor and outdoor perception tasks.
Abstract:Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
Abstract:Recent advancements in language models have led to significant improvements in mathematical reasoning across various benchmarks. However, most of these benchmarks rely on automatic evaluation methods that only compare final answers using heuristics, without verifying the underlying reasoning steps. This limitation results in false positive solutions, where models may produce correct final answers but with flawed deduction paths. In this paper, we systematically examine the prevalence of false positive solutions in mathematical problem solving for language models. We analyze the characteristics and extent of this issue across different open-source models, datasets of varying difficulty levels, and decoding strategies. Specifically, we explore how false positives influence the inference time scaling behavior of language models. Our experimental results reveal that: (1) false positive solutions persist across different models, datasets, and decoding methods, (2) sampling-based inference time scaling methods do not alleviate the problem, and (3) the pass@N evaluation metric is more susceptible to false positives, suggesting a significantly lower scaling ceiling than what automatic evaluations indicate. Additionally, we analyze specific instances of false positives and discuss potential limitations in self-improvement techniques and synthetic data generation under such conditions.
Abstract:This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer. Conventional RAG methods usually perform a single retrieval step before the generation process, which limits their effectiveness in addressing complex queries due to imperfect retrieval results. In contrast, our proposed method, CoRAG (Chain-of-Retrieval Augmented Generation), allows the model to dynamically reformulate the query based on the evolving state. To train CoRAG effectively, we utilize rejection sampling to automatically generate intermediate retrieval chains, thereby augmenting existing RAG datasets that only provide the correct final answer. At test time, we propose various decoding strategies to scale the model's test-time compute by controlling the length and number of sampled retrieval chains. Experimental results across multiple benchmarks validate the efficacy of CoRAG, particularly in multi-hop question answering tasks, where we observe more than 10 points improvement in EM score compared to strong baselines. On the KILT benchmark, CoRAG establishes a new state-of-the-art performance across a diverse range of knowledge-intensive tasks. Furthermore, we offer comprehensive analyses to understand the scaling behavior of CoRAG, laying the groundwork for future research aimed at developing factual and grounded foundation models.
Abstract:Transformer-based methods have achieved remarkable performance in event-based object detection, owing to the global modeling ability. However, they neglect the influence of non-event and noisy regions and process them uniformly, leading to high computational overhead. To mitigate computation cost, some researchers propose window attention based sparsification strategies to discard unimportant regions, which sacrifices the global modeling ability and results in suboptimal performance. To achieve better trade-off between accuracy and efficiency, we propose Sparse Mamba (SMamba), which performs adaptive sparsification to reduce computational effort while maintaining global modeling capability. Specifically, a Spatio-Temporal Continuity Assessment module is proposed to measure the information content of tokens and discard uninformative ones by leveraging the spatiotemporal distribution differences between activity and noise events. Based on the assessment results, an Information-Prioritized Local Scan strategy is designed to shorten the scan distance between high-information tokens, facilitating interactions among them in the spatial dimension. Furthermore, to extend the global interaction from 2D space to 3D representations, a Global Channel Interaction module is proposed to aggregate channel information from a global spatial perspective. Results on three datasets (Gen1, 1Mpx, and eTram) demonstrate that our model outperforms other methods in both performance and efficiency.
Abstract:In this paper, we study a secure integrated sensing and communication (ISAC) system employing a full-duplex base station with sensing capabilities against a mobile proactive adversarial target$\unicode{x2014}$a malicious unmanned aerial vehicle (M-UAV). We develop a game-theoretic model to enhance communication security, radar sensing accuracy, and power efficiency. The interaction between the legitimate network and the mobile adversary is formulated as a non-cooperative Stackelberg game (NSG), where the M-UAV acts as the leader and strategically adjusts its trajectory to improve its eavesdropping ability while conserving power and avoiding obstacles. In response, the legitimate network, acting as the follower, dynamically allocates resources to minimize network power usage while ensuring required secrecy rates and sensing performance. To address this challenging problem, we propose a low-complexity successive convex approximation (SCA) method for network resource optimization combined with a deep reinforcement learning (DRL) algorithm for adaptive M-UAV trajectory planning through sequential interactions and learning. Simulation results demonstrate the efficacy of the proposed method in addressing security challenges of dynamic ISAC systems in 6G, i.e., achieving a Stackelberg equilibrium with robust performance while mitigating the adversary's ability to intercept network signals.
Abstract:We introduce a bootstrapping approach to train long-context language models by exploiting their short-context capabilities only. Our method utilizes a simple agent workflow to synthesize diverse long-context instruction tuning data, thereby eliminating the necessity for manual data collection and annotation. The proposed data synthesis workflow requires only a short-context language model, a text retriever, and a document collection, all of which are readily accessible within the open-source ecosystem. Subsequently, language models are fine-tuned using the synthesized data to extend their context lengths. In this manner, we effectively transfer the short-context capabilities of language models to long-context scenarios through a bootstrapping process. We conduct experiments with the open-source Llama-3 family of models and demonstrate that our method can successfully extend the context length to up to 1M tokens, achieving superior performance across various benchmarks.
Abstract:Ocean forecasting is crucial for both scientific research and societal benefits. Currently, the most accurate forecasting systems are global ocean forecasting systems (GOFSs), which represent the ocean state variables (OSVs) as discrete grids and solve partial differential equations (PDEs) governing the transitions of oceanic state variables using numerical methods. However, GOFSs processes are computationally expensive and prone to cumulative errors. Recently, large artificial intelligence (AI)-based models significantly boosted forecasting speed and accuracy. Unfortunately, building a large AI ocean forecasting system that can be considered cross-spatiotemporal and air-sea coupled forecasts remains a significant challenge. Here, we introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system. Results demonstrate that the time embedding module in LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days. The air-sea coupled module effectively simulates air-sea interactions. The ocean self-attention module improves network stability and accelerates convergence during training, and the adaptive thermocline loss function improves the accuracy of thermocline forecasting. Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12 (GLORYS12) for training and achieves more reliable deterministic forecasting results for OSVs. LangYa forecasting system provides global ocean researchers with access to a powerful software tool for accurate ocean forecasting and opens a new paradigm for ocean science.