Abstract:Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.
Abstract:We introduce Skeleton-Cache, the first training-free test-time adaptation framework for skeleton-based zero-shot action recognition (SZAR), aimed at improving model generalization to unseen actions during inference. Skeleton-Cache reformulates inference as a lightweight retrieval process over a non-parametric cache that stores structured skeleton representations, combining both global and fine-grained local descriptors. To guide the fusion of descriptor-wise predictions, we leverage the semantic reasoning capabilities of large language models (LLMs) to assign class-specific importance weights. By integrating these structured descriptors with LLM-guided semantic priors, Skeleton-Cache dynamically adapts to unseen actions without any additional training or access to training data. Extensive experiments on NTU RGB+D 60/120 and PKU-MMD II demonstrate that Skeleton-Cache consistently boosts the performance of various SZAR backbones under both zero-shot and generalized zero-shot settings. The code is publicly available at https://github.com/Alchemist0754/Skeleton-Cache.
Abstract:Zero-shot skeleton-based action recognition (ZS-SAR) is fundamentally constrained by prevailing approaches that rely on aligning skeleton features with static, class-level semantics. This coarse-grained alignment fails to bridge the domain shift between seen and unseen classes, thereby impeding the effective transfer of fine-grained visual knowledge. To address these limitations, we introduce \textbf{DynaPURLS}, a unified framework that establishes robust, multi-scale visual-semantic correspondences and dynamically refines them at inference time to enhance generalization. Our framework leverages a large language model to generate hierarchical textual descriptions that encompass both global movements and local body-part dynamics. Concurrently, an adaptive partitioning module produces fine-grained visual representations by semantically grouping skeleton joints. To fortify this fine-grained alignment against the train-test domain shift, DynaPURLS incorporates a dynamic refinement module. During inference, this module adapts textual features to the incoming visual stream via a lightweight learnable projection. This refinement process is stabilized by a confidence-aware, class-balanced memory bank, which mitigates error propagation from noisy pseudo-labels. Extensive experiments on three large-scale benchmark datasets, including NTU RGB+D 60/120 and PKU-MMD, demonstrate that DynaPURLS significantly outperforms prior art, setting new state-of-the-art records. The source code is made publicly available at https://github.com/Alchemist0754/DynaPURLS
Abstract:Skeleton-based action recognition has garnered significant attention in the computer vision community. Inspired by the recent success of the selective state-space model (SSM) Mamba in modeling 1D temporal sequences, we propose TSkel-Mamba, a hybrid Transformer-Mamba framework that effectively captures both spatial and temporal dynamics. In particular, our approach leverages Spatial Transformer for spatial feature learning while utilizing Mamba for temporal modeling. Mamba, however, employs separate SSM blocks for individual channels, which inherently limits its ability to model inter-channel dependencies. To better adapt Mamba for skeleton data and enhance Mamba`s ability to model temporal dependencies, we introduce a Temporal Dynamic Modeling (TDM) block, which is a versatile plug-and-play component that integrates a novel Multi-scale Temporal Interaction (MTI) module. The MTI module employs multi-scale Cycle operators to capture cross-channel temporal interactions, a critical factor in action recognition. Extensive experiments on NTU-RGB+D 60, NTU-RGB+D 120, NW-UCLA and UAV-Human datasets demonstrate that TSkel-Mamba achieves state-of-the-art performance while maintaining low inference time, making it both efficient and highly effective.
Abstract:Image-to-video (I2V) generation seeks to produce realistic motion sequences from a single reference image. Although recent methods exhibit strong temporal consistency, they often struggle when dealing with complex, non-repetitive human movements, leading to unnatural deformations. To tackle this issue, we present LatentMove, a DiT-based framework specifically tailored for highly dynamic human animation. Our architecture incorporates a conditional control branch and learnable face/body tokens to preserve consistency as well as fine-grained details across frames. We introduce Complex-Human-Videos (CHV), a dataset featuring diverse, challenging human motions designed to benchmark the robustness of I2V systems. We also introduce two metrics to assess the flow and silhouette consistency of generated videos with their ground truth. Experimental results indicate that LatentMove substantially improves human animation quality--particularly when handling rapid, intricate movements--thereby pushing the boundaries of I2V generation. The code, the CHV dataset, and the evaluation metrics will be available at https://github.com/ --.
Abstract:Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
Abstract:Neural implicit 3D reconstruction can reproduce shapes without 3D supervision, and it learns the 3D scene through volume rendering methods and neural implicit representations. Current neural surface reconstruction methods tend to randomly sample the entire image, making it difficult to learn high-frequency details on the surface, and thus the reconstruction results tend to be too smooth. We designed a method (FreNeuS) based on high-frequency information to solve the problem of insufficient surface detail. Specifically, FreNeuS uses pixel gradient changes to easily acquire high-frequency regions in an image and uses the obtained high-frequency information to guide surface detail reconstruction. High-frequency information is first used to guide the dynamic sampling of rays, applying different sampling strategies according to variations in high-frequency regions. To further enhance the focus on surface details, we have designed a high-frequency weighting method that constrains the representation of high-frequency details during the reconstruction process. Qualitative and quantitative results show that our method can reconstruct fine surface details and obtain better surface reconstruction quality compared to existing methods. In addition, our method is more applicable and can be generalized to any NeuS-based work.
Abstract:Text-to-motion generation has recently garnered significant research interest, primarily focusing on generating human motion sequences in blank backgrounds. However, human motions commonly occur within diverse 3D scenes, which has prompted exploration into scene-aware text-to-motion generation methods. Yet, existing scene-aware methods often rely on large-scale ground-truth motion sequences in diverse 3D scenes, which poses practical challenges due to the expensive cost. To mitigate this challenge, we are the first to propose a \textbf{T}raining-free \textbf{S}cene-aware \textbf{T}ext-to-\textbf{Motion} framework, dubbed as \textbf{TSTMotion}, that efficiently empowers pre-trained blank-background motion generators with the scene-aware capability. Specifically, conditioned on the given 3D scene and text description, we adopt foundation models together to reason, predict and validate a scene-aware motion guidance. Then, the motion guidance is incorporated into the blank-background motion generators with two modifications, resulting in scene-aware text-driven motion sequences. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework. We release our code in \href{https://tstmotion.github.io/}{Project Page}.
Abstract:This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data-often inaccessible during online inference-and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop Point-Cache, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
Abstract:Text-to-Image (T2I) models have advanced significantly, but their growing popularity raises security concerns due to their potential to generate harmful images. To address these issues, we propose UPAM, a novel framework to evaluate the robustness of T2I models from an attack perspective. Unlike prior methods that focus solely on textual defenses, UPAM unifies the attack on both textual and visual defenses. Additionally, it enables gradient-based optimization, overcoming reliance on enumeration for improved efficiency and effectiveness. To handle cases where T2I models block image outputs due to defenses, we introduce Sphere-Probing Learning (SPL) to enable optimization even without image results. Following SPL, our model bypasses defenses, inducing the generation of harmful content. To ensure semantic alignment with attacker intent, we propose Semantic-Enhancing Learning (SEL) for precise semantic control. UPAM also prioritizes the naturalness of adversarial prompts using In-context Naturalness Enhancement (INE), making them harder for human examiners to detect. Additionally, we address the issue of iterative queries--common in prior methods and easily detectable by API defenders--by introducing Transferable Attack Learning (TAL), allowing effective attacks with minimal queries. Extensive experiments validate UPAM's superiority in effectiveness, efficiency, naturalness, and low query detection rates.