Abstract:Image-to-video (I2V) generation seeks to produce realistic motion sequences from a single reference image. Although recent methods exhibit strong temporal consistency, they often struggle when dealing with complex, non-repetitive human movements, leading to unnatural deformations. To tackle this issue, we present LatentMove, a DiT-based framework specifically tailored for highly dynamic human animation. Our architecture incorporates a conditional control branch and learnable face/body tokens to preserve consistency as well as fine-grained details across frames. We introduce Complex-Human-Videos (CHV), a dataset featuring diverse, challenging human motions designed to benchmark the robustness of I2V systems. We also introduce two metrics to assess the flow and silhouette consistency of generated videos with their ground truth. Experimental results indicate that LatentMove substantially improves human animation quality--particularly when handling rapid, intricate movements--thereby pushing the boundaries of I2V generation. The code, the CHV dataset, and the evaluation metrics will be available at https://github.com/ --.
Abstract:Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
Abstract:In Few-Shot Learning (FSL), traditional metric-based approaches often rely on global metrics to compute similarity. However, in natural scenes, the spatial arrangement of key instances is often inconsistent across images. This spatial misalignment can result in mismatched semantic pixels, leading to inaccurate similarity measurements. To address this issue, we propose a novel method called the Layer-Wise Features Metric of Semantic-Pixel Matching (LWFM-SPM) to make finer comparisons. Our method enhances model performance through two key modules: (1) the Layer-Wise Embedding (LWE) Module, which refines the cross-correlation of image pairs to generate well-focused feature maps for each layer; (2)the Semantic-Pixel Matching (SPM) Module, which aligns critical pixels based on semantic embeddings using an assignment algorithm. We conducted extensive experiments to evaluate our method on four widely used few-shot classification benchmarks: miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. The results indicate that LWFM-SPM achieves competitive performance across these benchmarks. Our code will be publicly available on https://github.com/Halo2Tang/Code-for-LWFM-SPM.
Abstract:This paper investigates the role of CLIP image embeddings within the Stable Video Diffusion (SVD) framework, focusing on their impact on video generation quality and computational efficiency. Our findings indicate that CLIP embeddings, while crucial for aesthetic quality, do not significantly contribute towards the subject and background consistency of video outputs. Moreover, the computationally expensive cross-attention mechanism can be effectively replaced by a simpler linear layer. This layer is computed only once at the first diffusion inference step, and its output is then cached and reused throughout the inference process, thereby enhancing efficiency while maintaining high-quality outputs. Building on these insights, we introduce the VCUT, a training-free approach optimized for efficiency within the SVD architecture. VCUT eliminates temporal cross-attention and replaces spatial cross-attention with a one-time computed linear layer, significantly reducing computational load. The implementation of VCUT leads to a reduction of up to 322T Multiple-Accumulate Operations (MACs) per video and a decrease in model parameters by up to 50M, achieving a 20% reduction in latency compared to the baseline. Our approach demonstrates that conditioning during the Semantic Binding stage is sufficient, eliminating the need for continuous computation across all inference steps and setting a new standard for efficient video generation.
Abstract:The study of music-generated dance is a novel and challenging Image generation task. It aims to input a piece of music and seed motions, then generate natural dance movements for the subsequent music. Transformer-based methods face challenges in time series prediction tasks related to human movements and music due to their struggle in capturing the nonlinear relationship and temporal aspects. This can lead to issues like joint deformation, role deviation, floating, and inconsistencies in dance movements generated in response to the music. In this paper, we propose a Quaternion-Enhanced Attention Network (QEAN) for visual dance synthesis from a quaternion perspective, which consists of a Spin Position Embedding (SPE) module and a Quaternion Rotary Attention (QRA) module. First, SPE embeds position information into self-attention in a rotational manner, leading to better learning of features of movement sequences and audio sequences, and improved understanding of the connection between music and dance. Second, QRA represents and fuses 3D motion features and audio features in the form of a series of quaternions, enabling the model to better learn the temporal coordination of music and dance under the complex temporal cycle conditions of dance generation. Finally, we conducted experiments on the dataset AIST++, and the results show that our approach achieves better and more robust performance in generating accurate, high-quality dance movements. Our source code and dataset can be available from https://github.com/MarasyZZ/QEAN and https://google.github.io/aistplusplus_dataset respectively.
Abstract:Image enhancement is a significant research area in the fields of computer vision and image processing. In recent years, many learning-based methods for image enhancement have been developed, where the Look-up-table (LUT) has proven to be an effective tool. In this paper, we delve into the potential of Contrastive Language-Image Pre-Training (CLIP) Guided Prompt Learning, proposing a simple structure called CLIP-LUT for image enhancement. We found that the prior knowledge of CLIP can effectively discern the quality of degraded images, which can provide reliable guidance. To be specific, We initially learn image-perceptive prompts to distinguish between original and target images using CLIP model, in the meanwhile, we introduce a very simple network by incorporating a simple baseline to predict the weights of three different LUT as enhancement network. The obtained prompts are used to steer the enhancement network like a loss function and improve the performance of model. We demonstrate that by simply combining a straightforward method with CLIP, we can obtain satisfactory results.
Abstract:Underwater images often exhibit poor quality, imbalanced coloration, and low contrast due to the complex and intricate interaction of light, water, and objects. Despite the significant contributions of previous underwater enhancement techniques, there exist several problems that demand further improvement: (i) Current deep learning methodologies depend on Convolutional Neural Networks (CNNs) that lack multi-scale enhancement and also have limited global perception fields. (ii) The scarcity of paired real-world underwater datasets poses a considerable challenge, and the utilization of synthetic image pairs risks overfitting. To address the aforementioned issues, this paper presents a Multi-scale Transformer-based Network called UWFormer for enhancing images at multiple frequencies via semi-supervised learning, in which we propose a Nonlinear Frequency-aware Attention mechanism and a Multi-Scale Fusion Feed-forward Network for low-frequency enhancement. Additionally, we introduce a specialized underwater semi-supervised training strategy, proposing a Subaqueous Perceptual Loss function to generate reliable pseudo labels. Experiments using full-reference and non-reference underwater benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of both quantity and visual quality.
Abstract:Document shadow is a common issue that arise when capturing documents using mobile devices, which significantly impacts the readability. Current methods encounter various challenges including inaccurate detection of shadow masks and estimation of illumination. In this paper, we propose ShaDocFormer, a Transformer-based architecture that integrates traditional methodologies and deep learning techniques to tackle the problem of document shadow removal. The ShaDocFormer architecture comprises two components: the Shadow-attentive Threshold Detector (STD) and the Cascaded Fusion Refiner (CFR). The STD module employs a traditional thresholding technique and leverages the attention mechanism of the Transformer to gather global information, thereby enabling precise detection of shadow masks. The cascaded and aggregative structure of the CFR module facilitates a coarse-to-fine restoration process for the entire image. As a result, ShaDocFormer excels in accurately detecting and capturing variations in both shadow and illumination, thereby enabling effective removal of shadows. Extensive experiments demonstrate that ShaDocFormer outperforms current state-of-the-art methods in both qualitative and quantitative measurements.
Abstract:Shadows often occur when we capture the documents with casual equipment, which influences the visual quality and readability of the digital copies. Different from the algorithms for natural shadow removal, the algorithms in document shadow removal need to preserve the details of fonts and figures in high-resolution input. Previous works ignore this problem and remove the shadows via approximate attention and small datasets, which might not work in real-world situations. We handle high-resolution document shadow removal directly via a larger-scale real-world dataset and a carefully designed frequency-aware network. As for the dataset, we acquire over 7k couples of high-resolution (2462 x 3699) images of real-world document pairs with various samples under different lighting circumstances, which is 10 times larger than existing datasets. As for the design of the network, we decouple the high-resolution images in the frequency domain, where the low-frequency details and high-frequency boundaries can be effectively learned via the carefully designed network structure. Powered by our network and dataset, the proposed method clearly shows a better performance than previous methods in terms of visual quality and numerical results. The code, models, and dataset are available at: https://github.com/CXH-Research/DocShadow-SD7K
Abstract:Vignetting commonly occurs as a degradation in images resulting from factors such as lens design, improper lens hood usage, and limitations in camera sensors. This degradation affects image details, color accuracy, and presents challenges in computational photography. Existing vignetting removal algorithms predominantly rely on ideal physics assumptions and hand-crafted parameters, resulting in ineffective removal of irregular vignetting and suboptimal results. Moreover, the substantial lack of real-world vignetting datasets hinders the objective and comprehensive evaluation of vignetting removal. To address these challenges, we present Vigset, a pioneering dataset for vignette removal. Vigset includes 983 pairs of both vignetting and vignetting-free high-resolution ($5340\times3697$) real-world images under various conditions. In addition, We introduce DeVigNet, a novel frequency-aware Transformer architecture designed for vignetting removal. Through the Laplacian Pyramid decomposition, we propose the Dual Aggregated Fusion Transformer to handle global features and remove vignetting in the low-frequency domain. Additionally, we introduce the Adaptive Channel Expansion Module to enhance details in the high-frequency domain. The experiments demonstrate that the proposed model outperforms existing state-of-the-art methods.