Terminus Group, Beijing, China
Abstract:We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks: person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed bipartite graph reasoning (BGR) block aims to reason the long-range cross relations between the source and target pose in a bipartite graph, which mitigates some of the challenges caused by pose deformation. Moreover, we propose a new interaction-and-aggregation (IA) block to effectively update and enhance the feature representation capability of both a person's shape and appearance in an interactive way. To further capture the change in pose of each part more precisely, we propose a novel part-aware bipartite graph reasoning (PBGR) block to decompose the task of reasoning the global structure transformation with a bipartite graph into learning different local transformations for different semantic body/face parts. Experiments on two challenging generation tasks with three public datasets demonstrate the effectiveness of the proposed methods in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.
Abstract:The pioneering method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling. This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data. However, it often suffers from label inconsistency or limited diversity, which leads to poor performance. In this work, we prove that the core reason for this is lack of a clustering-friendly property in the embedding space. We address this by minimizing the inter- to intra-class similarity ratio to provide clustering-friendly embedding features, and validate our approach through comprehensive experiments. Note that, despite only utilizing a simple clustering algorithm (k-means) in our embedding space to obtain the pseudo-labels, we achieve significant improvement. Moreover, we adopt a progressive evaluation mechanism to obtain more diverse samples in order to further alleviate the limited diversity problem. Finally, our approach is also model-agnostic and can easily be integrated into existing supervised methods. To demonstrate its generalization ability, we integrate it into two representative algorithms: MAML and EP. The results on three main few-shot benchmarks clearly show that the proposed method achieves significant improvement compared to state-of-the-art models. Notably, our approach also outperforms the corresponding supervised method in two tasks.
Abstract:LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously, capture precise geometry of the surrounding environment and are crucial to many autonomous detection and navigation tasks. Though many 3D deep architectures have been developed, efficient collection and annotation of large amounts of point clouds remain one major challenge in the analytic and understanding of point cloud data. This paper presents PolarMix, a point cloud augmentation technique that is simple and generic but can mitigate the data constraint effectively across different perception tasks and scenarios. PolarMix enriches point cloud distributions and preserves point cloud fidelity via two cross-scan augmentation strategies that cut, edit, and mix point clouds along the scanning direction. The first is scene-level swapping which exchanges point cloud sectors of two LiDAR scans that are cut along the azimuth axis. The second is instance-level rotation and paste which crops point instances from one LiDAR scan, rotates them by multiple angles (to create multiple copies), and paste the rotated point instances into other scans. Extensive experiments show that PolarMix achieves superior performance consistently across different perception tasks and scenarios. In addition, it can work as plug-and-play for various 3D deep architectures and also performs well for unsupervised domain adaptation.
Abstract:Most existing few-shot learning (FSL) methods require a large amount of labeled data in meta-training, which is a major limit. To reduce the requirement of labels, a semi-supervised meta-training setting has been proposed for FSL, which includes only a few labeled samples and numbers of unlabeled samples in base classes. However, existing methods under this setting require class-aware sample selection from the unlabeled set, which violates the assumption of unlabeled set. In this paper, we propose a practical semi-supervised meta-training setting with truly unlabeled data. Under the new setting, the performance of existing methods drops notably. To better utilize both the labeled and truly unlabeled data, we propose a simple and effective meta-training framework, called pseudo-labeling based on meta-learning (PLML). Firstly, we train a classifier via common semi-supervised learning (SSL) and use it to obtain the pseudo-labels of unlabeled data. Then we build few-shot tasks from labeled and pseudo-labeled data and run meta-learning over the constructed tasks to learn the FSL model. Surprisingly, through extensive experiments across two FSL datasets, we find that this simple meta-training framework effectively prevents the performance degradation of FSL under limited labeled data. Besides, benefiting from meta-training, the proposed method improves the classifiers learned by two representative SSL algorithms as well.
Abstract:This paper presents a Refinement Pyramid Transformer (RePFormer) for robust facial landmark detection. Most facial landmark detectors focus on learning representative image features. However, these CNN-based feature representations are not robust enough to handle complex real-world scenarios due to ignoring the internal structure of landmarks, as well as the relations between landmarks and context. In this work, we formulate the facial landmark detection task as refining landmark queries along pyramid memories. Specifically, a pyramid transformer head (PTH) is introduced to build both homologous relations among landmarks and heterologous relations between landmarks and cross-scale contexts. Besides, a dynamic landmark refinement (DLR) module is designed to decompose the landmark regression into an end-to-end refinement procedure, where the dynamically aggregated queries are transformed to residual coordinates predictions. Extensive experimental results on four facial landmark detection benchmarks and their various subsets demonstrate the superior performance and high robustness of our framework.
Abstract:Existing studies in few-shot semantic segmentation only focus on mining the target object information, however, often are hard to tell ambiguous regions, especially in non-target regions, which include background (BG) and Distracting Objects (DOs). To alleviate this problem, we propose a novel framework, namely Non-Target Region Eliminating (NTRE) network, to explicitly mine and eliminate BG and DO regions in the query. First, a BG Mining Module (BGMM) is proposed to extract the BG region via learning a general BG prototype. To this end, we design a BG loss to supervise the learning of BGMM only using the known target object segmentation ground truth. Then, a BG Eliminating Module and a DO Eliminating Module are proposed to successively filter out the BG and DO information from the query feature, based on which we can obtain a BG and DO-free target object segmentation result. Furthermore, we propose a prototypical contrastive learning algorithm to improve the model ability of distinguishing the target object from DOs. Extensive experiments on both PASCAL-5i and COCO-20i datasets show that our approach is effective despite its simplicity.
Abstract:Invariance to diverse types of image corruption, such as noise, blurring, or colour shifts, is essential to establish robust models in computer vision. Data augmentation has been the major approach in improving the robustness against common corruptions. However, the samples produced by popular augmentation strategies deviate significantly from the underlying data manifold. As a result, performance is skewed toward certain types of corruption. To address this issue, we propose a multi-source vicinal transfer augmentation (VITA) method for generating diverse on-manifold samples. The proposed VITA consists of two complementary parts: tangent transfer and integration of multi-source vicinal samples. The tangent transfer creates initial augmented samples for improving corruption robustness. The integration employs a generative model to characterize the underlying manifold built by vicinal samples, facilitating the generation of on-manifold samples. Our proposed VITA significantly outperforms the current state-of-the-art augmentation methods, demonstrated in extensive experiments on corruption benchmarks.
Abstract:We present RangeUDF, a new implicit representation based framework to recover the geometry and semantics of continuous 3D scene surfaces from point clouds. Unlike occupancy fields or signed distance fields which can only model closed 3D surfaces, our approach is not restricted to any type of topology. Being different from the existing unsigned distance fields, our framework does not suffer from any surface ambiguity. In addition, our RangeUDF can jointly estimate precise semantics for continuous surfaces. The key to our approach is a range-aware unsigned distance function together with a surface-oriented semantic segmentation module. Extensive experiments show that RangeUDF clearly surpasses state-of-the-art approaches for surface reconstruction on four point cloud datasets. Moreover, RangeUDF demonstrates superior generalization capability across multiple unseen datasets, which is nearly impossible for all existing approaches.
Abstract:This paper strives for activity recognition under domain shift, for example caused by change of scenery or camera viewpoint. The leading approaches reduce the shift in activity appearance by adversarial training and self-supervised learning. Different from these vision-focused works we leverage activity sounds for domain adaptation as they have less variance across domains and can reliably indicate which activities are not happening. We propose an audio-adaptive encoder and associated learning methods that discriminatively adjust the visual feature representation as well as addressing shifts in the semantic distribution. To further eliminate domain-specific features and include domain-invariant activity sounds for recognition, an audio-infused recognizer is proposed, which effectively models the cross-modal interaction across domains. We also introduce the new task of actor shift, with a corresponding audio-visual dataset, to challenge our method with situations where the activity appearance changes dramatically. Experiments on this dataset, EPIC-Kitchens and CharadesEgo show the effectiveness of our approach.
Abstract:RGBD object tracking is gaining momentum in computer vision research thanks to the development of depth sensors. Although numerous RGBD trackers have been proposed with promising performance, an in-depth review for comprehensive understanding of this area is lacking. In this paper, we firstly review RGBD object trackers from different perspectives, including RGBD fusion, depth usage, and tracking framework. Then, we summarize the existing datasets and the evaluation metrics. We benchmark a representative set of RGBD trackers, and give detailed analyses based on their performances. Particularly, we are the first to provide depth quality evaluation and analysis of tracking results in depth-friendly scenarios in RGBD tracking. For long-term settings in most RGBD tracking videos, we give an analysis of trackers' performance on handling target disappearance. To enable better understanding of RGBD trackers, we propose robustness evaluation against input perturbations. Finally, we summarize the challenges and provide open directions for this community. All resources are publicly available at https://github.com/memoryunreal/RGBD-tracking-review.