Abstract:The demand for immersive and interactive communication has driven advancements in 3D video conferencing, yet achieving high-fidelity 3D talking face representation at low bitrates remains a challenge. Traditional 2D video compression techniques fail to preserve fine-grained geometric and appearance details, while implicit neural rendering methods like NeRF suffer from prohibitive computational costs. To address these challenges, we propose a lightweight, high-fidelity, low-bitrate 3D talking face compression framework that integrates FLAME-based parametric modeling with 3DGS neural rendering. Our approach transmits only essential facial metadata in real time, enabling efficient reconstruction with a Gaussian-based head model. Additionally, we introduce a compact representation and compression scheme, including Gaussian attribute compression and MLP optimization, to enhance transmission efficiency. Experimental results demonstrate that our method achieves superior rate-distortion performance, delivering high-quality facial rendering at extremely low bitrates, making it well-suited for real-time 3D video conferencing applications.
Abstract:Conventional communication systems, including both separation-based coding and AI-driven joint source-channel coding (JSCC), are largely guided by Shannon's rate-distortion theory. However, relying on generic distortion metrics fails to capture complex human visual perception, often resulting in blurred or unrealistic reconstructions. In this paper, we propose Joint Source-Channel-Generation Coding (JSCGC), a novel paradigm that shifts the focus from deterministic reconstruction to probabilistic generation. JSCGC leverages a generative model at the receiver as a generator rather than a conventional decoder to parameterize the data distribution, enabling direct maximization of mutual information under channel constraints while controlling stochastic sampling to produce outputs residing on the authentic data manifold with high fidelity. We further derive a theoretical lower bound on the maximum semantic inconsistency with given transmitted mutual information, elucidating the fundamental limits of communication in controlling the generative process. Extensive experiments on image transmission demonstrate that JSCGC substantially improves perceptual quality and semantic fidelity, significantly outperforming conventional distortion-oriented JSCC methods.
Abstract:Multi-view egocentric dynamic scene reconstruction holds significant research value for applications in holographic documentation of social interactions. However, existing reconstruction datasets focus on static multi-view or single-egocentric view setups, lacking multi-view egocentric datasets for dynamic scene reconstruction. Therefore, we present MultiEgo, the first multi-view egocentric dataset for 4D dynamic scene reconstruction. The dataset comprises five canonical social interaction scenes: meetings, performances, and a presentation. Each scene provides five authentic egocentric videos captured by participants wearing AR glasses. We design a hardware-based data acquisition system and processing pipeline, achieving sub-millisecond temporal synchronization across views, coupled with accurate pose annotations. Experiment validation demonstrates the practical utility and effectiveness of our dataset for free-viewpoint video (FVV) applications, establishing MultiEgo as a foundational resource for advancing multi-view egocentric dynamic scene reconstruction research.
Abstract:Immersive virtual reality (VR) applications impose stringent requirements on latency, energy efficiency, and computational resources, particularly in multi-user interactive scenarios. To address these challenges, we introduce the concept of spatial computing communications (SCC), a framework designed to meet the latency and energy demands of multi-user VR over distributed mobile edge computing (MEC) networks. SCC jointly represents the physical space, defined by users and base stations, and the virtual space, representing shared immersive environments, using a probabilistic model of user dynamics and resource requirements. The resource deployment task is then formulated as a multi-objective combinatorial optimization (MOCO) problem that simultaneously minimizes system latency and energy consumption across distributed MEC resources. To solve this problem, we propose MO-CMPO, a multi-objective consistency model with policy optimization that integrates supervised learning and reinforcement learning (RL) fine-tuning guided by preference weights. Leveraging a sparse graph neural network (GNN), MO-CMPO efficiently generates Pareto-optimal solutions. Simulations with real-world New Radio base station datasets demonstrate that MO-CMPO achieves superior hypervolume performance and significantly lower inference latency than baseline methods. Furthermore, the analysis reveals practical deployment patterns: latency-oriented solutions favor local MEC execution to reduce transmission delay, while energy-oriented solutions minimize redundant placements to save energy.




Abstract:The demand for semantically rich 3D models of indoor scenes is rapidly growing, driven by applications in augmented reality, virtual reality, and robotics. However, creating them from sparse views remains a challenge due to geometric ambiguity. Existing methods often treat semantics as a passive feature painted on an already-formed, and potentially flawed, geometry. We posit that for robust sparse-view reconstruction, semantic understanding instead be an active, guiding force. This paper introduces AlignGS, a novel framework that actualizes this vision by pioneering a synergistic, end-to-end optimization of geometry and semantics. Our method distills rich priors from 2D foundation models and uses them to directly regularize the 3D representation through a set of novel semantic-to-geometry guidance mechanisms, including depth consistency and multi-faceted normal regularization. Extensive evaluations on standard benchmarks demonstrate that our approach achieves state-of-the-art results in novel view synthesis and produces reconstructions with superior geometric accuracy. The results validate that leveraging semantic priors as a geometric regularizer leads to more coherent and complete 3D models from limited input views. Our code is avaliable at https://github.com/MediaX-SJTU/AlignGS .
Abstract:3D Gaussian Splatting (3DGS) has recently enabled real-time photorealistic rendering in compact scenes, but scaling to large urban environments introduces severe aliasing artifacts and optimization instability, especially under high-resolution (e.g., 4K) rendering. These artifacts, manifesting as flickering textures and jagged edges, arise from the mismatch between Gaussian primitives and the multi-scale nature of urban geometry. While existing ``divide-and-conquer'' pipelines address scalability, they fail to resolve this fidelity gap. In this paper, we propose PrismGS, a physically-grounded regularization framework that improves the intrinsic rendering behavior of 3D Gaussians. PrismGS integrates two synergistic regularizers. The first is pyramidal multi-scale supervision, which enforces consistency by supervising the rendering against a pre-filtered image pyramid. This compels the model to learn an inherently anti-aliased representation that remains coherent across different viewing scales, directly mitigating flickering textures. This is complemented by an explicit size regularization that imposes a physically-grounded lower bound on the dimensions of the 3D Gaussians. This prevents the formation of degenerate, view-dependent primitives, leading to more stable and plausible geometric surfaces and reducing jagged edges. Our method is plug-and-play and compatible with existing pipelines. Extensive experiments on MatrixCity, Mill-19, and UrbanScene3D demonstrate that PrismGS achieves state-of-the-art performance, yielding significant PSNR gains around 1.5 dB against CityGaussian, while maintaining its superior quality and robustness under demanding 4K rendering.




Abstract:Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA.




Abstract:The Human-Object Interaction (HOI) task explores the dynamic interactions between humans and objects in physical environments, providing essential biomechanical and cognitive-behavioral foundations for fields such as robotics, virtual reality, and human-computer interaction. However, existing HOI data sets focus on details of affordance, often neglecting the influence of physical properties of objects on human long-term motion. To bridge this gap, we introduce the PA-HOI Motion Capture dataset, which highlights the impact of objects' physical attributes on human motion dynamics, including human posture, moving velocity, and other motion characteristics. The dataset comprises 562 motion sequences of human-object interactions, with each sequence performed by subjects of different genders interacting with 35 3D objects that vary in size, shape, and weight. This dataset stands out by significantly extending the scope of existing ones for understanding how the physical attributes of different objects influence human posture, speed, motion scale, and interacting strategies. We further demonstrate the applicability of the PA-HOI dataset by integrating it with existing motion generation methods, validating its capacity to transfer realistic physical awareness.
Abstract:Animation colorization plays a vital role in animation production, yet existing methods struggle to achieve color accuracy and temporal consistency. To address these challenges, we propose \textbf{AnimeColor}, a novel reference-based animation colorization framework leveraging Diffusion Transformers (DiT). Our approach integrates sketch sequences into a DiT-based video diffusion model, enabling sketch-controlled animation generation. We introduce two key components: a High-level Color Extractor (HCE) to capture semantic color information and a Low-level Color Guider (LCG) to extract fine-grained color details from reference images. These components work synergistically to guide the video diffusion process. Additionally, we employ a multi-stage training strategy to maximize the utilization of reference image color information. Extensive experiments demonstrate that AnimeColor outperforms existing methods in color accuracy, sketch alignment, temporal consistency, and visual quality. Our framework not only advances the state of the art in animation colorization but also provides a practical solution for industrial applications. The code will be made publicly available at \href{https://github.com/IamCreateAI/AnimeColor}{https://github.com/IamCreateAI/AnimeColor}.
Abstract:Most learning-based lossless compressors are designed for a single modality, requiring separate models for multi-modal data and lacking flexibility. However, different modalities vary significantly in format and statistical properties, making it ineffective to use compressors that lack modality-specific adaptations. While multi-modal large language models (MLLMs) offer a potential solution for modality-unified compression, their excessive complexity hinders practical deployment. To address these challenges, we focus on the two most common modalities, image and text, and propose DualComp, the first unified and lightweight learning-based dual-modality lossless compressor. Built on a lightweight backbone, DualComp incorporates three key structural enhancements to handle modality heterogeneity: modality-unified tokenization, modality-switching contextual learning, and modality-routing mixture-of-experts. A reparameterization training strategy is also used to boost compression performance. DualComp integrates both modality-specific and shared parameters for efficient parameter utilization, enabling near real-time inference (200KB/s) on desktop CPUs. With much fewer parameters, DualComp achieves compression performance on par with the SOTA LLM-based methods for both text and image datasets. Its simplified single-modality variant surpasses the previous best image compressor on the Kodak dataset by about 9% using just 1.2% of the model size.