Abstract:Radiation is typically the most time-consuming physical process in numerical models. One solution is to use machine learning methods to simulate the radiation process to improve computational efficiency. From an operational standpoint, this study investigates critical limitations inherent to hybrid forecasting frameworks that embed deep neural networks into numerical prediction models, with a specific focus on two fundamental bottlenecks: coupling compatibility and long-term integration stability. A residual convolutional neural network is employed to approximate the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) within the global operational system of China Meteorological Administration. We adopted an offline training and online coupling approach. First, a comprehensive dataset is generated through model simulations, encompassing all atmospheric columns both with and without cloud cover. To ensure the stability of the hybrid model, the dataset is enhanced via experience replay, and additional output constraints based on physical significance are imposed. Meanwhile, a LibTorch-based coupling method is utilized, which is more suitable for real-time operational computations. The hybrid model is capable of performing ten-day integrated forecasts as required. A two-month operational reforecast experiment demonstrates that the machine learning emulator achieves accuracy comparable to that of the traditional physical scheme, while accelerating the computation speed by approximately eightfold.
Abstract:Jailbreak attacks pose significant threats to large language models (LLMs), enabling attackers to bypass safeguards. However, existing reactive defense approaches struggle to keep up with the rapidly evolving multi-turn jailbreaks, where attackers continuously deepen their attacks to exploit vulnerabilities. To address this critical challenge, we propose HoneyTrap, a novel deceptive LLM defense framework leveraging collaborative defenders to counter jailbreak attacks. It integrates four defensive agents, Threat Interceptor, Misdirection Controller, Forensic Tracker, and System Harmonizer, each performing a specialized security role and collaborating to complete a deceptive defense. To ensure a comprehensive evaluation, we introduce MTJ-Pro, a challenging multi-turn progressive jailbreak dataset that combines seven advanced jailbreak strategies designed to gradually deepen attack strategies across multi-turn attacks. Besides, we present two novel metrics: Mislead Success Rate (MSR) and Attack Resource Consumption (ARC), which provide more nuanced assessments of deceptive defense beyond conventional measures. Experimental results on GPT-4, GPT-3.5-turbo, Gemini-1.5-pro, and LLaMa-3.1 demonstrate that HoneyTrap achieves an average reduction of 68.77% in attack success rates compared to state-of-the-art baselines. Notably, even in a dedicated adaptive attacker setting with intensified conditions, HoneyTrap remains resilient, leveraging deceptive engagement to prolong interactions, significantly increasing the time and computational costs required for successful exploitation. Unlike simple rejection, HoneyTrap strategically wastes attacker resources without impacting benign queries, improving MSR and ARC by 118.11% and 149.16%, respectively.




Abstract:Diffusion models achieve remarkable generative quality, but computational overhead scales with step count, model depth, and sequence length. Feature caching is effective since adjacent timesteps yield highly similar features. However, an inherent trade-off remains: aggressive timestep reuse offers large speedups but can easily cross the critical line, hurting fidelity, while block- or token-level reuse is safer but yields limited computational savings. We present X-Slim (eXtreme-Slimming Caching), a training-free, cache-based accelerator that, to our knowledge, is the first unified framework to exploit cacheable redundancy across timesteps, structure (blocks), and space (tokens). Rather than simply mixing levels, X-Slim introduces a dual-threshold controller that turns caching into a push-then-polish process: it first pushes reuse at the timestep level up to an early-warning line, then switches to lightweight block- and token-level refresh to polish the remaining redundancy, and triggers full inference once the critical line is crossed to reset accumulated error. At each level, context-aware indicators decide when and where to cache. Across diverse tasks, X-Slim advances the speed-quality frontier. On FLUX.1-dev and HunyuanVideo, it reduces latency by up to 4.97x and 3.52x with minimal perceptual loss. On DiT-XL/2, it reaches 3.13x acceleration and improves FID by 2.42 over prior methods.
Abstract:Almost all scientific data have uncertainties originating from different sources. Gaussian process regression (GPR) models are a natural way to model data with Gaussian-distributed uncertainties. GPR also has the benefit of reducing I/O bandwidth and storage requirements for large scientific simulations. However, the reconstruction from the GPR models suffers from high computation complexity. To make the situation worse, classic approaches for visualizing the data uncertainties, like probabilistic marching cubes, are also computationally very expensive, especially for data of high resolutions. In this paper, we accelerate the level-crossing probability calculation efficiency on GPR models by subdividing the data spatially into a hierarchical data structure and only reconstructing values adaptively in the regions that have a non-zero probability. For each region, leveraging the known GPR kernel and the saved data observations, we propose a novel approach to efficiently calculate an upper bound for the level-crossing probability inside the region and use this upper bound to make the subdivision and reconstruction decisions. We demonstrate that our value occurrence probability estimation is accurate with a low computation cost by experiments that calculate the level-crossing probability fields on different datasets.




Abstract:Flow-Matching (FM)-based zero-shot text-to-speech (TTS) systems exhibit high-quality speech synthesis and robust generalization capabilities. However, the speaker representation ability of such systems remains underexplored, primarily due to the lack of explicit speaker-specific supervision in the FM framework. To this end, we conduct an empirical analysis of speaker information distribution and reveal its non-uniform allocation across time steps and network layers, underscoring the need for adaptive speaker alignment. Accordingly, we propose Time-Layer Adaptive Speaker Alignment (TLA-SA), a loss that enhances speaker consistency by jointly leveraging temporal and hierarchical variations in speaker information. Experimental results show that TLA-SA significantly improves speaker similarity compared to baseline systems on both research- and industrial-scale datasets and generalizes effectively across diverse model architectures, including decoder-only language models (LM) and FM-based TTS systems free of LM.
Abstract:Multi-focus image fusion (MFIF) aims to yield an all-focused image from multiple partially focused inputs, which is crucial in applications cover sur-veillance, microscopy, and computational photography. However, existing methods struggle to preserve sharp focus-defocus boundaries, often resulting in blurred transitions and focused details loss. To solve this problem, we propose a MFIF method based on significant boundary enhancement, which generates high-quality fused boundaries while effectively detecting focus in-formation. Particularly, we propose a gradient-domain-based model that can obtain initial fusion results with complete boundaries and effectively pre-serve the boundary details. Additionally, we introduce Tenengrad gradient detection to extract salient features from both the source images and the ini-tial fused image, generating the corresponding saliency maps. For boundary refinement, we develop a focus metric based on gradient and complementary information, integrating the salient features with the complementary infor-mation across images to emphasize focused regions and produce a high-quality initial decision result. Extensive experiments on four public datasets demonstrate that our method consistently outperforms 12 state-of-the-art methods in both subjective and objective evaluations. We have realized codes in https://github.com/Lihyua/GICI
Abstract:Recent advances in robotics have enabled the widespread deployment of autonomous robotic systems in complex operational environments, presenting both unprecedented opportunities and significant security problems. Traditional shepherding approaches based on fixed formations are often ineffective or risky in urban and obstacle-rich scenarios, especially when facing adversarial agents with unknown and adaptive behaviors. This paper addresses this challenge as an extended herding problem, where defensive robotic systems must safely guide adversarial agents with unknown strategies away from protected areas and into predetermined safe regions, while maintaining collision-free navigation in dynamic environments. We propose a hierarchical hybrid framework based on reach-avoid game theory and local motion planning, incorporating a virtual containment boundary and event-triggered pursuit mechanisms to enable scalable and robust multi-agent coordination. Simulation results demonstrate that the proposed approach achieves safe and efficient guidance of adversarial agents to designated regions.




Abstract:Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA.




Abstract:Contextual speech recognition refers to the ability to identify preferences for specific content based on contextual information. Recently, leveraging the contextual understanding capabilities of Speech LLM to achieve contextual biasing by injecting contextual information through prompts have emerged as a research hotspot.However, the direct information injection method via prompts relies on the internal attention mechanism of the model, making it impossible to explicitly control the extent of information injection. To address this limitation, we propose a joint decoding method to control the contextual information. This approach enables explicit control over the injected contextual information and achieving superior recognition performance. Additionally, Our method can also be used for sensitive word suppression recognition.Furthermore, experimental results show that even Speech LLM not pre-trained on long contextual data can acquire long contextual capabilities through our method.
Abstract:RNN-T-based keyword spotting (KWS) with autoregressive decoding~(AR) has gained attention due to its streaming architecture and superior performance. However, the simplicity of the prediction network in RNN-T poses an overfitting issue, especially under challenging scenarios, resulting in degraded performance. In this paper, we propose a masked self-distillation (MSD) training strategy that avoids RNN-Ts overly relying on prediction networks to alleviate overfitting. Such training enables masked non-autoregressive (NAR) decoding, which fully masks the RNN-T predictor output during KWS decoding. In addition, we propose a semi-autoregressive (SAR) decoding approach to integrate the advantages of AR and NAR decoding. Our experiments across multiple KWS datasets demonstrate that MSD training effectively alleviates overfitting. The SAR decoding method preserves the superior performance of AR decoding while benefits from the overfitting suppression of NAR decoding, achieving excellent results.