Abstract:The Human-Object Interaction (HOI) task explores the dynamic interactions between humans and objects in physical environments, providing essential biomechanical and cognitive-behavioral foundations for fields such as robotics, virtual reality, and human-computer interaction. However, existing HOI data sets focus on details of affordance, often neglecting the influence of physical properties of objects on human long-term motion. To bridge this gap, we introduce the PA-HOI Motion Capture dataset, which highlights the impact of objects' physical attributes on human motion dynamics, including human posture, moving velocity, and other motion characteristics. The dataset comprises 562 motion sequences of human-object interactions, with each sequence performed by subjects of different genders interacting with 35 3D objects that vary in size, shape, and weight. This dataset stands out by significantly extending the scope of existing ones for understanding how the physical attributes of different objects influence human posture, speed, motion scale, and interacting strategies. We further demonstrate the applicability of the PA-HOI dataset by integrating it with existing motion generation methods, validating its capacity to transfer realistic physical awareness.
Abstract:Class-Incremental Learning (CIL) is a practical and challenging problem for achieving general artificial intelligence. Recently, Pre-Trained Models (PTMs) have led to breakthroughs in both visual and natural language processing tasks. Despite recent studies showing PTMs' potential ability to learn sequentially, a plethora of work indicates the necessity of alleviating the catastrophic forgetting of PTMs. Through a pilot study and a causal analysis of CIL, we reveal that the crux lies in the imbalanced causal effects between new and old data. Specifically, the new data encourage models to adapt to new classes while hindering the adaptation of old classes. Similarly, the old data encourages models to adapt to old classes while hindering the adaptation of new classes. In other words, the adaptation process between new and old classes conflicts from the causal perspective. To alleviate this problem, we propose Balancing the Causal Effects (BaCE) in CIL. Concretely, BaCE proposes two objectives for building causal paths from both new and old data to the prediction of new and classes, respectively. In this way, the model is encouraged to adapt to all classes with causal effects from both new and old data and thus alleviates the causal imbalance problem. We conduct extensive experiments on continual image classification, continual text classification, and continual named entity recognition. Empirical results show that BaCE outperforms a series of CIL methods on different tasks and settings.