Abstract:Acquiring large-scale, high-fidelity robot demonstration data remains a critical bottleneck for scaling Vision-Language-Action (VLA) models in dexterous manipulation. We propose a Real-Sim-Real data collection and data editing pipeline that transforms human demonstrations into robot-executable, environment-specific training data without direct robot teleoperation. Standardized data collection rooms are built to capture multimodal human demonstrations (synchronized 3 RGB-D videos, 11 RGB videos, 29-DoF glove joint angles, and 14-channel tactile signals). Based on these human demonstrations, we introduce a tactile-aware retargeting method that maps human hand states to robot dex-hand states via geometry and force-guided optimization. Then the retargeted robot trajectories are rendered in a photorealistic Isaac Sim environment to build robot training data. Real world experiments have demonstrated: (1) The retargeted dex-hand trajectories achieve an 84\% success rate across 10 diverse object manipulation tasks. (2) VLA policies (Pi0.5) trained exclusively on our generated data achieve 80\% average success rate on three representative tasks, i.e., pick-and-place, pushing and pouring. To conclude, robot training data can be efficiently "painted" from human demonstrations using our real-sim-real data pipeline. We offer a scalable, cost-effective alternative to teleoperation with minimal performance loss for complex dexterous manipulation.
Abstract:Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}




Abstract:Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA.