Abstract:Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA.
Abstract:Recent State Space Models (SSM), especially Mamba, have demonstrated impressive performance in visual modeling and possess superior model efficiency. However, the application of Mamba to visual tasks suffers inferior performance due to three main constraints existing in the sequential model: 1) Casual computing is incapable of accessing global context; 2) Long-range forgetting when computing the current hidden states; 3) Weak spatial structural modeling due to the transformed sequential input. To address these issues, we investigate a simple yet powerful vision task Adaptor for Mamba models, which consists of two functional modules: Adaptor-T and Adaptor-S. When solving the hidden states for SSM, we apply a lightweight prediction module Adaptor-T to select a set of learnable locations as memory augmentations to ease long-range forgetting issues. Moreover, we leverage Adapator-S, composed of multi-scale dilated convolutional kernels, to enhance the spatial modeling and introduce the image inductive bias into the feature output. Both modules can enlarge the context modeling in casual computing, as the output is enhanced by the inaccessible features. We explore three usages of Mamba-Adaptor: A general visual backbone for various vision tasks; A booster module to raise the performance of pretrained backbones; A highly efficient fine-tuning module that adapts the base model for transfer learning tasks. Extensive experiments verify the effectiveness of Mamba-Adaptor in three settings. Notably, our Mamba-Adaptor achieves state-of the-art performance on the ImageNet and COCO benchmarks.