Abstract:Recommender systems (RecSys) are essential for online platforms, providing personalized suggestions to users within a vast sea of information. Self-supervised graph learning seeks to harness high-order collaborative filtering signals through unsupervised augmentation on the user-item bipartite graph, primarily leveraging a multi-task learning framework that includes both supervised recommendation loss and self-supervised contrastive loss. However, this separate design introduces additional graph convolution processes and creates inconsistencies in gradient directions due to disparate losses, resulting in prolonged training times and sub-optimal performance. In this study, we introduce a unified framework of Supervised Graph Contrastive Learning for recommendation (SGCL) to address these issues. SGCL uniquely combines the training of recommendation and unsupervised contrastive losses into a cohesive supervised contrastive learning loss, aligning both tasks within a single optimization direction for exceptionally fast training. Extensive experiments on three real-world datasets show that SGCL outperforms state-of-the-art methods, achieving superior accuracy and efficiency.