Abstract:Chain-of-Thought (CoT) prompting plays an indispensable role in endowing large language models (LLMs) with complex reasoning capabilities. However, CoT currently faces two fundamental challenges: (1) Sufficiency, which ensures that the generated intermediate inference steps comprehensively cover and substantiate the final conclusion; and (2) Necessity, which identifies the inference steps that are truly indispensable for the soundness of the resulting answer. We propose a causal framework that characterizes CoT reasoning through the dual lenses of sufficiency and necessity. Incorporating causal Probability of Sufficiency and Necessity allows us not only to determine which steps are logically sufficient or necessary to the prediction outcome, but also to quantify their actual influence on the final reasoning outcome under different intervention scenarios, thereby enabling the automated addition of missing steps and the pruning of redundant ones. Extensive experimental results on various mathematical and commonsense reasoning benchmarks confirm substantial improvements in reasoning efficiency and reduced token usage without sacrificing accuracy. Our work provides a promising direction for improving LLM reasoning performance and cost-effectiveness.
Abstract:Financial time series often exhibit low signal-to-noise ratio, posing significant challenges for accurate data interpretation and prediction and ultimately decision making. Generative models have gained attention as powerful tools for simulating and predicting intricate data patterns, with the diffusion model emerging as a particularly effective method. This paper introduces a novel approach utilizing the diffusion model as a denoiser for financial time series in order to improve data predictability and trading performance. By leveraging the forward and reverse processes of the conditional diffusion model to add and remove noise progressively, we reconstruct original data from noisy inputs. Our extensive experiments demonstrate that diffusion model-based denoised time series significantly enhance the performance on downstream future return classification tasks. Moreover, trading signals derived from the denoised data yield more profitable trades with fewer transactions, thereby minimizing transaction costs and increasing overall trading efficiency. Finally, we show that by using classifiers trained on denoised time series, we can recognize the noising state of the market and obtain excess return.
Abstract:Text-to-image models have shown remarkable progress in generating high-quality images from user-provided prompts. Despite this, the quality of these images varies due to the models' sensitivity to human language nuances. With advancements in large language models, there are new opportunities to enhance prompt design for image generation tasks. Existing research primarily focuses on optimizing prompts for direct interaction, while less attention is given to scenarios involving intermediary agents, like the Stable Diffusion model. This study proposes a Multi-Agent framework to optimize input prompts for text-to-image generation models. Central to this framework is a prompt generation mechanism that refines initial queries using dynamic instructions, which evolve through iterative performance feedback. High-quality prompts are then fed into a state-of-the-art text-to-image model. A professional prompts database serves as a benchmark to guide the instruction modifier towards generating high-caliber prompts. A scoring system evaluates the generated images, and an LLM generates new instructions based on calculated gradients. This iterative process is managed by the Upper Confidence Bound (UCB) algorithm and assessed using the Human Preference Score version 2 (HPS v2). Preliminary ablation studies highlight the effectiveness of various system components and suggest areas for future improvements.