Abstract:Analog circuit design remains a knowledge- and experience-intensive process that relies heavily on human intuition for topology generation and device parameter tuning. Existing LLM-based approaches typically depend on prompt-driven netlist generation or predefined topology templates, limiting their ability to satisfy complex specification requirements. We propose AnalogSAGE, an open-source self-evolving multi-agent framework that coordinates three-stage agent explorations through four stratified memory layers, enabling iterative refinement with simulation-grounded feedback. To support reproducibility and generality, we release the source code. Our benchmark spans ten specification-driven operational amplifier design problems of varying difficulty, enabling quantitative and cross-task comparison under identical conditions. Evaluated under the open-source SKY130 PDK with ngspice, AnalogSAGE achieves a 10$\times$ overall pass rate, a 48$\times$ Pass@1, and a 4$\times$ reduction in parameter search space compared with existing frameworks, demonstrating that stratified memory and grounded reasoning substantially enhance the reliability and autonomy of analog design automation in practice.
Abstract:The rapid advancement of large language models (LLMs) has not been matched by their evaluation in low-resource languages, especially Southeast Asian languages like Lao. To fill this gap, we introduce LaoBench, the first large-scale, high-quality, and multidimensional benchmark dataset dedicated to assessing LLMs' comprehensive language understanding and reasoning abilities in Lao. LaoBench comprises over 17,000 carefully curated samples spanning three core dimensions: knowledge application, K12 foundational education, and bilingual translation among Lao, Chinese, and English. The dataset is divided into open-source and closed-source subsets, with the closed-source portion enabling black-box evaluation on an official platform to ensure fairness and data security. Our data construction pipeline integrates expert human curation with automated agent-assisted verification, ensuring linguistic accuracy, cultural relevance, and educational value. Benchmarking multiple state-of-the-art LLMs on LaoBench reveals that current models still face significant challenges in mastering Lao across diverse tasks. We hope LaoBench will catalyze further research and development of AI technologies for underrepresented Southeast Asian languages.
Abstract:Although recent advancements in learning-based analog circuit design automation have tackled tasks such as topology generation, device sizing, and layout synthesis, efficient performance evaluation remains a major bottleneck. Traditional SPICE simulations are time-consuming, while existing machine learning methods often require topology-specific retraining or manual substructure segmentation for fine-tuning, hindering scalability and adaptability. In this work, we propose ZeroSim, a transformer-based performance modeling framework designed to achieve robust in-distribution generalization across trained topologies under novel parameter configurations and zero-shot generalization to unseen topologies without any fine-tuning. We apply three key enabling strategies: (1) a diverse training corpus of 3.6 million instances covering over 60 amplifier topologies, (2) unified topology embeddings leveraging global-aware tokens and hierarchical attention to robustly generalize to novel circuits, and (3) a topology-conditioned parameter mapping approach that maintains consistent structural representations independent of parameter variations. Our experimental results demonstrate that ZeroSim significantly outperforms baseline models such as multilayer perceptrons, graph neural networks and transformers, delivering accurate zero-shot predictions across different amplifier topologies. Additionally, when integrated into a reinforcement learning-based parameter optimization pipeline, ZeroSim achieves a remarkable speedup (13x) compared to conventional SPICE simulations, underscoring its practical value for a wide range of analog circuit design automation tasks.
Abstract:Gaussian Splatting (GS) enables immersive rendering, but realistic 3D object-scene composition remains challenging. Baked appearance and shadow information in GS radiance fields cause inconsistencies when combining objects and scenes. Addressing this requires relightable object reconstruction and scene lighting estimation. For relightable object reconstruction, existing Gaussian-based inverse rendering methods often rely on ray tracing, leading to low efficiency. We introduce Surface Octahedral Probes (SOPs), which store lighting and occlusion information and allow efficient 3D querying via interpolation, avoiding expensive ray tracing. SOPs provide at least a 2x speedup in reconstruction and enable real-time shadow computation in Gaussian scenes. For lighting estimation, existing Gaussian-based inverse rendering methods struggle to model intricate light transport and often fail in complex scenes, while learning-based methods predict lighting from a single image and are viewpoint-sensitive. We observe that 3D object-scene composition primarily concerns the object's appearance and nearby shadows. Thus, we simplify the challenging task of full scene lighting estimation by focusing on the environment lighting at the object's placement. Specifically, we capture a 360 degrees reconstructed radiance field of the scene at the location and fine-tune a diffusion model to complete the lighting. Building on these advances, we propose ComGS, a novel 3D object-scene composition framework. Our method achieves high-quality, real-time rendering at around 28 FPS, produces visually harmonious results with vivid shadows, and requires only 36 seconds for editing. Code and dataset are available at https://nju-3dv.github.io/projects/ComGS/.
Abstract:Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present \textbf{CircuitSense}, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
Abstract:Poor sitting posture is a critical yet often overlooked factor contributing to long-term musculoskeletal disorders and physiological dysfunctions. Existing sitting posture monitoring systems, although leveraging visual, IMU, or pressure-based modalities, often suffer from coarse-grained recognition and lack the semantic expressiveness necessary for personalized feedback. In this paper, we propose \textbf{SitLLM}, a lightweight multimodal framework that integrates flexible pressure sensing with large language models (LLMs) to enable fine-grained posture understanding and personalized health-oriented response generation. SitLLM comprises three key components: (1) a \textit{Gaussian-Robust Sensor Embedding Module} that partitions pressure maps into spatial patches and injects local noise perturbations for robust feature extraction; (2) a \textit{Prompt-Driven Cross-Modal Alignment Module} that reprograms sensor embeddings into the LLM's semantic space via multi-head cross-attention using the pre-trained vocabulary embeddings; and (3) a \textit{Multi-Context Prompt Module} that fuses feature-level, structure-level, statistical-level, and semantic-level contextual information to guide instruction comprehension.
Abstract:Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect \textbf{SpatialVID}, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.
Abstract:Current research has found that some deep neural networks exhibit strong hierarchical self-similarity in feature representation or parameter distribution. However, aside from preliminary studies on how the power-law distribution of weights across different training stages affects model performance,there has been no quantitative analysis on how the self-similarity of hidden space geometry influences model weight optimization, nor is there a clear understanding of the dynamic behavior of internal neurons. Therefore, this paper proposes a complex network modeling method based on the output features of hidden-layer neurons to investigate the self-similarity of feature networks constructed at different hidden layers, and analyzes how adjusting the degree of self-similarity in feature networks can enhance the classification performance of deep neural networks. Validated on three types of networks MLP architectures, convolutional networks, and attention architectures this study reveals that the degree of self-similarity exhibited by feature networks varies across different model architectures. Furthermore, embedding constraints on the self-similarity of feature networks during the training process can improve the performance of self-similar deep neural networks (MLP architectures and attention architectures) by up to 6 percentage points.
Abstract:Dynamic link prediction in continuous-time dynamic graphs is a fundamental task for modeling evolving complex systems. Existing node-centric and event-centric methods focus on individual interactions or atomic states, failing to capture the structural cohesion of composite hyper-events, groups of causally related events. To address this, we propose HyperEvent, a framework reframing dynamic link prediction as hyper-event recognition. Central to HyperEvent is the dynamic construction of an association sequence using event correlation vectors. These vectors quantify pairwise dependencies between the query event and relevant historical events, thereby characterizing the structural cohesion of a potential hyper-event. The framework predicts the occurrence of the query event by evaluating whether it collectively forms a valid hyper-event with these historical events. Notably, HyperEvent outperforms state-of-the-art methods on 4 out of 5 datasets in the official leaderboard. For scalability, we further introduce an efficient parallel training algorithm that segments large event streams to enable concurrent training. Experiments validate HyperEvent's superior accuracy and efficiency on large-scale graphs. Among which HyperEvent achieves a 6.95% improvement in Mean Reciprocal Rank over state-of-the-art baseline on the large-scale Flight dataset while utilizing only 10.17% of the training time.




Abstract:Video-based multimodal large language models (VMLLMs) have demonstrated remarkable potential in cross-modal video understanding. However, their abilities in fine-grained face comprehension remain largely underexplored. Given its pivotal role in human-centric intelligence, developing VMLLMs for facial understanding holds a fundamental problem. To address this gap, we propose FaVChat, the first VMLLM specifically designed for fine-grained facial video understanding. To facilitate its training, we construct a large-scale facial video dataset comprising over 60k videos, with the majority annotated with 83 fine-grained facial attributes. These attributes are incorporated to enrich GPT-4o-generated captions, yielding 60k high-quality video-summary pairs and an additional 170k fine-grained question-answering (QA) pairs. To effectively capture rich facial clues, we propose a hybrid model architecture composed of a general visual encoder, a dedicated facial encoder, and a mixture-of-experts-enhanced adapter for adaptive fusion of multi-source visual features. To mitigate information loss during feature transformation, we extract multi-granularity representations from the facial encoder and integrate them into the subsequent LLM. This design enhances the model's ability to comprehend and respond to questions involving diverse levels of visual details. We employ a progressive training paradigm, transitioning from video summarization to a high-quality subset of video QA, gradually increasing task complexity to enhance the model's fine-grained visual perception. We conduct extensive zero-shot evaluation on a couple of public benchmarks, demonstrating that FaVChat consistently surpasses existing VMLLMs across multiple tasks.