Abstract:Discovering superior circuit topologies requires navigating an exponentially large design space-a challenge traditionally reserved for human experts. Existing AI methods either select from predefined templates or generate novel topologies at a limited scale without rigorous verification, leaving large-scale performance-driven discovery underexplored. We present PowerGenie, a framework for automated discovery of higher-performance reconfigurable power converters at scale. PowerGenie introduces: (1) an automated analytical framework that determines converter functionality and theoretical performance limits without component sizing or SPICE simulation, and (2) an evolutionary finetuning method that co-evolves a generative model with its training distribution through fitness selection and uniqueness verification. Unlike existing methods that suffer from mode collapse and overfitting, our approach achieves higher syntax validity, function validity, novelty rate, and figure-of-merit (FoM). PowerGenie discovers a novel 8-mode reconfigurable converter with 23% higher FoM than the best training topology. SPICE simulations confirm average absolute efficiency gains of 10% across 8 modes and up to 17% at a single mode. Code is available at https://github.com/xz-group/PowerGenie.
Abstract:Multi-agent large language model (LLM) and vision-language model (VLM) debate systems employ specialized roles for complex problem-solving, yet model specializations are not leveraged to decide which model should fill which role. We propose dynamic role assignment, a framework that runs a Meta-Debate to select suitable agents before the actual debate. The meta-debate has two stages: (1) proposal, where candidates provide role-tailored arguments, and (2) peer review, where proposals are scored with data and role-specific criteria to choose the best agent for each position. We evaluate our method on LLM problem solving benchmarks. Applied on top of existing debate systems, our approach consistently outperforms uniform assignments (filling all roles with the same model) by up to 74.8% and random assignments (assigning models to roles without considering their suitability) by up to 29.7%, depending on the task and the specific assignment. This work establishes a new paradigm for multi-agent system design, shifting from static agent deployment to dynamic and capability-aware selection.
Abstract:High-quality three-dimensional (3D) photoacoustic imaging (PAI) is gaining increasing attention in clinical applications. To address the challenges of limited space and high costs, irregular geometric transducer arrays that conform to specific imaging regions are promising for achieving high-quality 3D PAI with fewer transducers. However, traditional iterative reconstruction algorithms struggle with irregular array configurations, suffering from high computational complexity, substantial memory requirements, and lengthy reconstruction times. In this work, we introduce SlingBAG Pro, an advanced reconstruction algorithm based on the point cloud iteration concept of the Sliding ball adaptive growth (SlingBAG) method, while extending its compatibility to arbitrary array geometries. SlingBAG Pro maintains high reconstruction quality, reduces the number of required transducers, and employs a hierarchical optimization strategy that combines zero-gradient filtering with progressively increased temporal sampling rates during iteration. This strategy rapidly removes redundant spatial point clouds, accelerates convergence, and significantly shortens overall reconstruction time. Compared to the original SlingBAG algorithm, SlingBAG Pro achieves up to a 2.2-fold speed improvement in point cloud-based 3D PA reconstruction under irregular array geometries. The proposed method is validated through both simulation and in vivo mouse experiments, and the source code is publicly available at https://github.com/JaegerCQ/SlingBAG_Pro.
Abstract:Large language models (LLMs) are increasingly used in applications requiring factual accuracy, yet their outputs often contain hallucinated responses. While fact-checking can mitigate these errors, existing methods typically retrieve external evidence indiscriminately, overlooking the model's internal knowledge and potentially introducing irrelevant noise. Moreover, current systems lack targeted mechanisms to resolve specific uncertainties in the model's reasoning. Inspired by how humans fact-check, we argue that LLMs should adaptively decide whether to rely on internal knowledge or initiate retrieval based on their confidence in a given claim. We introduce Probabilistic Certainty and Consistency (PCC), a framework that estimates factual confidence by jointly modeling an LLM's probabilistic certainty and reasoning consistency. These confidence signals enable an adaptive verification strategy: the model answers directly when confident, triggers targeted retrieval when uncertain or inconsistent, and escalates to deep search when ambiguity is high. Our confidence-guided routing mechanism ensures that retrieval is invoked only when necessary, improving both efficiency and reliability. Extensive experiments across three challenging benchmarks show that PCC achieves better uncertainty quantification than verbalized confidence and consistently outperforms strong LLM-based fact-checking baselines. Furthermore, we demonstrate that PCC generalizes well across various LLMs.
Abstract:Analog circuit design remains a knowledge- and experience-intensive process that relies heavily on human intuition for topology generation and device parameter tuning. Existing LLM-based approaches typically depend on prompt-driven netlist generation or predefined topology templates, limiting their ability to satisfy complex specification requirements. We propose AnalogSAGE, an open-source self-evolving multi-agent framework that coordinates three-stage agent explorations through four stratified memory layers, enabling iterative refinement with simulation-grounded feedback. To support reproducibility and generality, we release the source code. Our benchmark spans ten specification-driven operational amplifier design problems of varying difficulty, enabling quantitative and cross-task comparison under identical conditions. Evaluated under the open-source SKY130 PDK with ngspice, AnalogSAGE achieves a 10$\times$ overall pass rate, a 48$\times$ Pass@1, and a 4$\times$ reduction in parameter search space compared with existing frameworks, demonstrating that stratified memory and grounded reasoning substantially enhance the reliability and autonomy of analog design automation in practice.
Abstract:The rapid advancement of large language models (LLMs) has not been matched by their evaluation in low-resource languages, especially Southeast Asian languages like Lao. To fill this gap, we introduce LaoBench, the first large-scale, high-quality, and multidimensional benchmark dataset dedicated to assessing LLMs' comprehensive language understanding and reasoning abilities in Lao. LaoBench comprises over 17,000 carefully curated samples spanning three core dimensions: knowledge application, K12 foundational education, and bilingual translation among Lao, Chinese, and English. The dataset is divided into open-source and closed-source subsets, with the closed-source portion enabling black-box evaluation on an official platform to ensure fairness and data security. Our data construction pipeline integrates expert human curation with automated agent-assisted verification, ensuring linguistic accuracy, cultural relevance, and educational value. Benchmarking multiple state-of-the-art LLMs on LaoBench reveals that current models still face significant challenges in mastering Lao across diverse tasks. We hope LaoBench will catalyze further research and development of AI technologies for underrepresented Southeast Asian languages.
Abstract:Although recent advancements in learning-based analog circuit design automation have tackled tasks such as topology generation, device sizing, and layout synthesis, efficient performance evaluation remains a major bottleneck. Traditional SPICE simulations are time-consuming, while existing machine learning methods often require topology-specific retraining or manual substructure segmentation for fine-tuning, hindering scalability and adaptability. In this work, we propose ZeroSim, a transformer-based performance modeling framework designed to achieve robust in-distribution generalization across trained topologies under novel parameter configurations and zero-shot generalization to unseen topologies without any fine-tuning. We apply three key enabling strategies: (1) a diverse training corpus of 3.6 million instances covering over 60 amplifier topologies, (2) unified topology embeddings leveraging global-aware tokens and hierarchical attention to robustly generalize to novel circuits, and (3) a topology-conditioned parameter mapping approach that maintains consistent structural representations independent of parameter variations. Our experimental results demonstrate that ZeroSim significantly outperforms baseline models such as multilayer perceptrons, graph neural networks and transformers, delivering accurate zero-shot predictions across different amplifier topologies. Additionally, when integrated into a reinforcement learning-based parameter optimization pipeline, ZeroSim achieves a remarkable speedup (13x) compared to conventional SPICE simulations, underscoring its practical value for a wide range of analog circuit design automation tasks.
Abstract:Gaussian Splatting (GS) enables immersive rendering, but realistic 3D object-scene composition remains challenging. Baked appearance and shadow information in GS radiance fields cause inconsistencies when combining objects and scenes. Addressing this requires relightable object reconstruction and scene lighting estimation. For relightable object reconstruction, existing Gaussian-based inverse rendering methods often rely on ray tracing, leading to low efficiency. We introduce Surface Octahedral Probes (SOPs), which store lighting and occlusion information and allow efficient 3D querying via interpolation, avoiding expensive ray tracing. SOPs provide at least a 2x speedup in reconstruction and enable real-time shadow computation in Gaussian scenes. For lighting estimation, existing Gaussian-based inverse rendering methods struggle to model intricate light transport and often fail in complex scenes, while learning-based methods predict lighting from a single image and are viewpoint-sensitive. We observe that 3D object-scene composition primarily concerns the object's appearance and nearby shadows. Thus, we simplify the challenging task of full scene lighting estimation by focusing on the environment lighting at the object's placement. Specifically, we capture a 360 degrees reconstructed radiance field of the scene at the location and fine-tune a diffusion model to complete the lighting. Building on these advances, we propose ComGS, a novel 3D object-scene composition framework. Our method achieves high-quality, real-time rendering at around 28 FPS, produces visually harmonious results with vivid shadows, and requires only 36 seconds for editing. Code and dataset are available at https://nju-3dv.github.io/projects/ComGS/.
Abstract:Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present \textbf{CircuitSense}, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
Abstract:Poor sitting posture is a critical yet often overlooked factor contributing to long-term musculoskeletal disorders and physiological dysfunctions. Existing sitting posture monitoring systems, although leveraging visual, IMU, or pressure-based modalities, often suffer from coarse-grained recognition and lack the semantic expressiveness necessary for personalized feedback. In this paper, we propose \textbf{SitLLM}, a lightweight multimodal framework that integrates flexible pressure sensing with large language models (LLMs) to enable fine-grained posture understanding and personalized health-oriented response generation. SitLLM comprises three key components: (1) a \textit{Gaussian-Robust Sensor Embedding Module} that partitions pressure maps into spatial patches and injects local noise perturbations for robust feature extraction; (2) a \textit{Prompt-Driven Cross-Modal Alignment Module} that reprograms sensor embeddings into the LLM's semantic space via multi-head cross-attention using the pre-trained vocabulary embeddings; and (3) a \textit{Multi-Context Prompt Module} that fuses feature-level, structure-level, statistical-level, and semantic-level contextual information to guide instruction comprehension.