Abstract:Current research has found that some deep neural networks exhibit strong hierarchical self-similarity in feature representation or parameter distribution. However, aside from preliminary studies on how the power-law distribution of weights across different training stages affects model performance,there has been no quantitative analysis on how the self-similarity of hidden space geometry influences model weight optimization, nor is there a clear understanding of the dynamic behavior of internal neurons. Therefore, this paper proposes a complex network modeling method based on the output features of hidden-layer neurons to investigate the self-similarity of feature networks constructed at different hidden layers, and analyzes how adjusting the degree of self-similarity in feature networks can enhance the classification performance of deep neural networks. Validated on three types of networks MLP architectures, convolutional networks, and attention architectures this study reveals that the degree of self-similarity exhibited by feature networks varies across different model architectures. Furthermore, embedding constraints on the self-similarity of feature networks during the training process can improve the performance of self-similar deep neural networks (MLP architectures and attention architectures) by up to 6 percentage points.
Abstract:Dynamic link prediction in continuous-time dynamic graphs is a fundamental task for modeling evolving complex systems. Existing node-centric and event-centric methods focus on individual interactions or atomic states, failing to capture the structural cohesion of composite hyper-events, groups of causally related events. To address this, we propose HyperEvent, a framework reframing dynamic link prediction as hyper-event recognition. Central to HyperEvent is the dynamic construction of an association sequence using event correlation vectors. These vectors quantify pairwise dependencies between the query event and relevant historical events, thereby characterizing the structural cohesion of a potential hyper-event. The framework predicts the occurrence of the query event by evaluating whether it collectively forms a valid hyper-event with these historical events. Notably, HyperEvent outperforms state-of-the-art methods on 4 out of 5 datasets in the official leaderboard. For scalability, we further introduce an efficient parallel training algorithm that segments large event streams to enable concurrent training. Experiments validate HyperEvent's superior accuracy and efficiency on large-scale graphs. Among which HyperEvent achieves a 6.95% improvement in Mean Reciprocal Rank over state-of-the-art baseline on the large-scale Flight dataset while utilizing only 10.17% of the training time.
Abstract:Video-based multimodal large language models (VMLLMs) have demonstrated remarkable potential in cross-modal video understanding. However, their abilities in fine-grained face comprehension remain largely underexplored. Given its pivotal role in human-centric intelligence, developing VMLLMs for facial understanding holds a fundamental problem. To address this gap, we propose FaVChat, the first VMLLM specifically designed for fine-grained facial video understanding. To facilitate its training, we construct a large-scale facial video dataset comprising over 60k videos, with the majority annotated with 83 fine-grained facial attributes. These attributes are incorporated to enrich GPT-4o-generated captions, yielding 60k high-quality video-summary pairs and an additional 170k fine-grained question-answering (QA) pairs. To effectively capture rich facial clues, we propose a hybrid model architecture composed of a general visual encoder, a dedicated facial encoder, and a mixture-of-experts-enhanced adapter for adaptive fusion of multi-source visual features. To mitigate information loss during feature transformation, we extract multi-granularity representations from the facial encoder and integrate them into the subsequent LLM. This design enhances the model's ability to comprehend and respond to questions involving diverse levels of visual details. We employ a progressive training paradigm, transitioning from video summarization to a high-quality subset of video QA, gradually increasing task complexity to enhance the model's fine-grained visual perception. We conduct extensive zero-shot evaluation on a couple of public benchmarks, demonstrating that FaVChat consistently surpasses existing VMLLMs across multiple tasks.
Abstract:With the exponential growth of user-generated content on video-sharing platforms, the challenge of facilitating efficient searching and browsing of videos has garnered significant attention. To enhance users' ability to swiftly locate and review pertinent videos, the creation of concise and informative video summaries has become increasingly important. Video-llama is an effective tool for generating video summarization, but it cannot effectively unify and optimize the modeling of temporal and spatial features and requires a lot of computational resources and time. Therefore, we propose MiLoRA-ViSum to more efficiently capture complex temporal dynamics and spatial relationships inherent in video data and to control the number of parameters for training. By extending traditional Low-Rank Adaptation (LoRA) into a sophisticated mixture-of-experts paradigm, MiLoRA-ViSum incorporates a dual temporal-spatial adaptation mechanism tailored specifically for video summarization tasks. This approach dynamically integrates specialized LoRA experts, each fine-tuned to address distinct temporal or spatial dimensions. Extensive evaluations of the VideoXum and ActivityNet datasets demonstrate that MiLoRA-ViSum achieves the best summarization performance compared to state-of-the-art models, while maintaining significantly lower computational costs. The proposed mixture-of-experts strategy, combined with the dual adaptation mechanism, highlights the model's potential to enhance video summarization capabilities, particularly in large-scale applications requiring both efficiency and precision.
Abstract:Large-scale dynamic three-dimensional (3D) photoacoustic imaging (PAI) is significantly important in clinical applications. In practical implementations, large-scale 3D real-time PAI systems typically utilize sparse two-dimensional (2D) sensor arrays with certain angular deficiencies, necessitating advanced iterative reconstruction (IR) algorithms to achieve quantitative PAI and reduce reconstruction artifacts. However, for existing IR algorithms, multi-frame 3D reconstruction leads to extremely high memory consumption and prolonged computation time, with limited consideration of the spatial-temporal continuity between data frames. Here, we propose a novel method, named the 4D sliding Gaussian ball adaptive growth (4D SlingBAG) algorithm, based on the current point cloud-based IR algorithm sliding Gaussian ball adaptive growth (SlingBAG), which has minimal memory consumption among IR methods. Our 4D SlingBAG method applies spatial-temporal coupled deformation functions to each Gaussian sphere in point cloud, thus explicitly learning the deformations features of the dynamic 3D PA scene. This allows for the efficient representation of various physiological processes (such as pulsation) or external pressures (e.g., blood perfusion experiments) contributing to changes in vessel morphology and blood flow during dynamic 3D PAI, enabling highly efficient IR for dynamic 3D PAI. Simulation experiments demonstrate that 4D SlingBAG achieves high-quality dynamic 3D PA reconstruction. Compared to performing reconstructions by using SlingBAG algorithm individually for each frame, our method significantly reduces computational time and keeps a extremely low memory consumption. The project for 4D SlingBAG can be found in the following GitHub repository: \href{https://github.com/JaegerCQ/4D-SlingBAG}{https://github.com/JaegerCQ/4D-SlingBAG}.
Abstract:Causal language models acquire vast amount of knowledge from general text corpus during pretraining, but the efficiency of knowledge learning is known to be unsatisfactory, especially when learning from knowledge-dense and small-sized corpora. The deficiency can come from long-distance dependencies which are hard to capture by language models, and overfitting to co-occurrence patterns and distracting clues in the training text. To address these issues, the paper proposes a method to enhance knowledge learning during language model pretraining, by enhancing elusive but important clues in text discovered by the language model themselves. We found that larger language models pay more attention to non-obvious but important clues, which are often overlooked by smaller language models. Therefore, we can identify these clues by contrasting the attention weights of large and small language models. We use the identified clues as a guide to perform token-dropout data augmentation on the training text, and observed a significant boost in both small and large models' performance in fact memorization. This shows that the behavior contrast between more and less-performant language models contains important clues for knowledge learning, and it can be ``amplified" for a straight-forward improvement in knowledge learning efficiency.
Abstract:The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.
Abstract:High-quality 3D photoacoustic imaging (PAI) reconstruction under sparse view or limited view has long been challenging. Traditional 3D iterative-based reconstruction methods suffer from both slow speed and high memory consumption. Recently, in computer graphics, the differentiable rendering has made significant progress, particularly with the rise of 3D Gaussian Splatting. Inspired by these, we introduce differentiable radiation into PAI, developing a novel reconstruction algorithm: the Sliding Ball Adaptive Growth algorithm (SlingBAG) for 3D PAI, which shows ability in high-quality 3D PAI reconstruction both under extremely sparse view and limited view. We established the point cloud dataset in PAI, and used unique differentiable rapid radiator based on the spherical decomposition strategy and the randomly initialized point cloud adaptively optimized according to sparse sensor data. Each point undergoes updates in 3D coordinates, initial pressure, and resolution (denoted by the radius of ball). Points undergo adaptive growth during iterative process, including point destroying, splitting and duplicating along the gradient of their positions, manifesting the sliding ball effect. Finally, our point cloud to voxel grid shader renders the final reconstruction results. Simulation and in vivo experiments demonstrate that our SlingBAG reconstruction result's SNR can be more than 40 dB under extremely sparse view, while the SNR of traditional back-projection algorithm's result is less than 20 dB. Moreover, the result of SlingBAG's structural similarity to the ground truth is significantly higher, with an SSIM value of 95.6%. Notably, our differentiable rapid radiator can conduct forward PA simulation in homogeneous, non-viscous media substantially faster than current methods that numerically simulate the wave propagation, such as k-Wave. The dataset and all code will be open source.
Abstract:Indirect User Requests (IURs), such as "It's cold in here" instead of "Could you please increase the temperature?" are common in human-human task-oriented dialogue and require world knowledge and pragmatic reasoning from the listener. While large language models (LLMs) can handle these requests effectively, smaller models deployed on virtual assistants often struggle due to resource constraints. Moreover, existing task-oriented dialogue benchmarks lack sufficient examples of complex discourse phenomena such as indirectness. To address this, we propose a set of linguistic criteria along with an LLM-based pipeline for generating realistic IURs to test natural language understanding (NLU) and dialogue state tracking (DST) models before deployment in a new domain. We also release IndirectRequests, a dataset of IURs based on the Schema Guided Dialog (SGD) corpus, as a comparative testbed for evaluating the performance of smaller models in handling indirect requests.
Abstract:Existing benchmark corpora of task-oriented dialogue are collected either using a "machines talking to machines" approach or by giving template-based goal descriptions to crowdworkers. These methods, however, often produce utterances that are markedly different from natural human conversations in which people often convey their preferences in indirect ways, such as through small talk. We term such utterances as Indirect User Requests (IURs). Understanding such utterances demands considerable world knowledge and reasoning capabilities on the listener's part. Our study introduces an LLM-based pipeline to automatically generate realistic, high-quality IURs for a given domain, with the ultimate goal of supporting research in natural language understanding (NLU) and dialogue state tracking (DST) for task-oriented dialogue systems. Our findings show that while large LLMs such as GPT-3.5 and GPT-4 generate high-quality IURs, achieving similar quality with smaller models is more challenging. We release IndirectRequests, a dataset of IURs that advances beyond the initial Schema-Guided Dialog (SGD) dataset in that it provides a challenging testbed for testing the "in the wild" performance of NLU and DST models.