Abstract:Accurate prediction of remaining useful life (RUL) is essential to enhance system reliability and reduce maintenance risk. Yet many strong contemporary models are fragile around fault onset and opaque to engineers: short, high-energy spikes are smoothed away or misread, fixed thresholds blunt sensitivity, and physics-based explanations are scarce. To remedy this, we introduce SARNet (Spike-Aware Consecutive Validation Framework), which builds on a Modern Temporal Convolutional Network (ModernTCN) and adds spike-aware detection to provide physics-informed interpretability. ModernTCN forecasts degradation-sensitive indicators; an adaptive consecutive threshold validates true spikes while suppressing noise. Failure-prone segments then receive targeted feature engineering (spectral slopes, statistical derivatives, energy ratios), and the final RUL is produced by a stacked RF--LGBM regressor. Across benchmark-ported datasets under an event-triggered protocol, SARNet consistently lowers error compared to recent baselines (RMSE 0.0365, MAE 0.0204) while remaining lightweight, robust, and easy to deploy.
Abstract:With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER