Abstract:Interacting defect systems are ubiquitous in materials under realistic scenarios, yet gaining an atomic-level understanding of these systems from a computational perspective is challenging - it often demands substantial resources due to the necessity of employing supercell calculations. While machine learning techniques have shown potential in accelerating materials simulations, their application to systems involving interacting defects remains relatively rare. In this work, we present a comparative study of three different methods to predict the free energy change of systems with interacting defects. We leveraging a limited dataset from Density Functional Theory(DFT) calculations to assess the performance models using materials descriptors, graph neural networks and cluster expansion. Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset. Furthermore, with synthetic data generate from cluster expansion model at near-DFT levels, we obtained enlarged dataset to assess the demands on data for training accurate prediction models using graph neural networks for systems featuring interacting defects. A brief discussion of the computational cost for each method is provided at the end. This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems.
Abstract:In the context of advancing 6G, a substantial paradigm shift is anticipated, highlighting comprehensive everything-to-everything interactions characterized by numerous connections and stringent adherence to Quality of Service/Experience (QoS/E) prerequisites. The imminent challenge stems from resource scarcity, prompting a deliberate transition to Computing-Network Convergence (CNC) as an auspicious approach for joint resource orchestration. While CNC-based mechanisms have garnered attention, their effectiveness in realizing future services, particularly in use cases like the Metaverse, may encounter limitations due to the continually changing nature of users, services, and resources. Hence, this paper presents the concept of Adaptable CNC (ACNC) as an autonomous Machine Learning (ML)-aided mechanism crafted for the joint orchestration of computing and network resources, catering to dynamic and voluminous user requests with stringent requirements. ACNC encompasses two primary functionalities: state recognition and context detection. Given the intricate nature of the user-service-computing-network space, the paper employs dimension reduction to generate live, holistic, abstract system states in a hierarchical structure. To address the challenges posed by dynamic changes, Continual Learning (CL) is employed, classifying the system state into contexts controlled by dedicated ML agents, enabling them to operate efficiently. These two functionalities are intricately linked within a closed loop overseen by the End-to-End (E2E) orchestrator to allocate resources. The paper introduces the components of ACNC, proposes a Metaverse scenario to exemplify ACNC's role in resource provisioning with Segment Routing v6 (SRv6), outlines ACNC's workflow, details a numerical analysis for efficiency assessment, and concludes with discussions on relevant challenges and potential avenues for future research.
Abstract:Recent learning methods for object pose estimation require resource-intensive training for each individual object instance or category, hampering their scalability in real applications when confronted with previously unseen objects. In this paper, we propose MatchU, a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images. MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects. We rely on learning geometric 3D descriptors that are rotation-invariant by design. By encoding pose-agnostic geometry, the learned descriptors naturally generalize to unseen objects and capture symmetries. To tackle ambiguous associations using 3D geometry only, we fuse additional RGB information into our descriptor. This is achieved through a novel attention-based mechanism that fuses cross-modal information, together with a matching loss that leverages the latent space learned from RGB data to guide the descriptor learning process. Extensive experiments reveal the generalizability of both the RGB-D fusion strategy as well as the descriptor efficacy. Benefiting from the novel designs, MatchU surpasses all existing methods by a significant margin in terms of both accuracy and speed, even without the requirement of expensive re-training or rendering.
Abstract:Predicting the trajectories of surrounding agents is still considered one of the most challenging tasks for autonomous driving. In this paper, we introduce a multi-modal trajectory prediction framework based on the transformer network. The semantic maps of each agent are used as inputs to convolutional networks to automatically derive relevant contextual information. A novel auxiliary loss that penalizes unfeasible off-road predictions is also proposed in this study. Experiments on the Lyft l5kit dataset show that the proposed model achieves state-of-the-art performance, substantially improving the accuracy and feasibility of the prediction outcomes.
Abstract:The applications of large language models (LLMs) have expanded well beyond the confines of text processing, signaling a new era where LLMs are envisioned as generalist language agents capable of operating within complex real-world environments. These environments are often highly expansive, making it impossible for the LLM to process them within its short-term memory. Motivated by recent research on extending the capabilities of LLMs with tools, this paper investigates the intriguing potential of tools to augment LLMs in handling such complexity. To this end, we design customized tools to aid in the proactive exploration within these massive environments. Such tools can serve as a middleware layer shielding the LLM from environmental complexity. In two representative complex environments -- knowledge bases (KBs) and databases -- we demonstrate the significant potential of augmenting language agents with tools in complex environments. Notably, equipped with these tools, GPT-4 achieves 2.8X the performance of the best baseline in tasks requiring access to database content and 2.2X in KB tasks. Our findings illuminate the path for advancing language agents in complex real-world applications.
Abstract:Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
Abstract:This study presents a pioneering effort to replicate human neuromechanical experiments within a virtual environment utilising a digital human model. By employing MyoSuite, a state-of-the-art human motion simulation platform enhanced by Reinforcement Learning (RL), multiple types of impedance identification experiments of human elbow were replicated on a musculoskeletal model. We compared the elbow movement controlled by an RL agent with the motion of an actual human elbow in terms of the impedance identified in torque-perturbation experiments. The findings reveal that the RL agent exhibits higher elbow impedance to stabilise the target elbow motion under perturbation than a human does, likely due to its shorter reaction time and superior sensory capabilities. This study serves as a preliminary exploration into the potential of virtual environment simulations for neuromechanical research, offering an initial yet promising alternative to conventional experimental approaches. An RL-controlled digital twin with complete musculoskeletal models of the human body is expected to be useful in designing experiments and validating rehabilitation theory before experiments on real human subjects.
Abstract:The training datasets used in long-tailed recognition are extremely unbalanced, resulting in significant variation in per-class accuracy across categories. Prior works mostly used average accuracy to evaluate their algorithms, which easily ignores those worst-performing categories. In this paper, we aim to enhance the accuracy of the worst-performing categories and utilize the harmonic mean and geometric mean to assess the model's performance. We revive the balanced undersampling idea to achieve this goal. In few-shot learning, balanced subsets are few-shot and will surely under-fit, hence it is not used in modern long-tailed learning. But, we find that it produces a more equitable distribution of accuracy across categories with much higher harmonic and geometric mean accuracy, and, but lower average accuracy. Moreover, we devise a straightforward model ensemble strategy, which does not result in any additional overhead and achieves improved harmonic and geometric mean while keeping the average accuracy almost intact when compared to state-of-the-art long-tailed learning methods. We validate the effectiveness of our approach on widely utilized benchmark datasets for long-tailed learning. Our code is at \href{https://github.com/yuhao318/BTM/}{https://github.com/yuhao318/BTM/}.
Abstract:Data privacy and silos are nontrivial and greatly challenging in many real-world applications. Federated learning is a decentralized approach to training models across multiple local clients without the exchange of raw data from client devices to global servers. However, existing works focus on a static data environment and ignore continual learning from streaming data with incremental tasks. Federated Continual Learning (FCL) is an emerging paradigm to address model learning in both federated and continual learning environments. The key objective of FCL is to fuse heterogeneous knowledge from different clients and retain knowledge of previous tasks while learning on new ones. In this work, we delineate federated learning and continual learning first and then discuss their integration, i.e., FCL, and particular FCL via knowledge fusion. In summary, our motivations are four-fold: we (1) raise a fundamental problem called ''spatial-temporal catastrophic forgetting'' and evaluate its impact on the performance using a well-known method called federated averaging (FedAvg), (2) integrate most of the existing FCL methods into two generic frameworks, namely synchronous FCL and asynchronous FCL, (3) categorize a large number of methods according to the mechanism involved in knowledge fusion, and finally (4) showcase an outlook on the future work of FCL.
Abstract:Even though the use of power electronics PE loads offers enhanced electrical energy conversion efficiency and control, they remain the primary sources of harmonics in grids. When diverse loads are connected in the distribution system, their interactions complicate establishing analytical models for the relationship between harmonic voltages and currents. To solve this, our paper presents a data-driven model using MCReSANet to construct the highly nonlinear between harmonic voltage and current. Two datasets from PCCs in Finland and Germany are utilized, which demonstrates that MCReSANet is capable of establishing accurate nonlinear mappings, even in the presence of various network characteristics for selected Finland and Germany datasets. The model built by MCReSANet can improve the MAE by 10% and 14% compared to the CNN, and by 8% and 17% compared to the MLP for both Finnish and German datasets, also showing much lower model uncertainty than others. This is a crucial prerequisite for more precise SHAP value-based feature importance analysis, which is a method for the model interpretability analysis in this paper. The results by feature importance analysis show the detailed relationships between each order of harmonic voltage and current in the distribution system. There is an interactive impact on each order of harmonic current, but some orders of harmonic voltages have a dominant influence on harmonic current emissions: positive sequence and zero sequence harmonics have the dominant importance in the Finnish and German networks, respectively, which conforms to the pattern of connected load types in two selected Finnish and German datasets. This paper enhances the potential for understanding and predicting harmonic current emissions by diverse PE loads in distribution systems, which is beneficial to more effective management for optimizing power quality in diverse grid environments.