Abstract:Intelligent agents powered by large language models (LLMs) have recently demonstrated impressive capabilities and gained increasing popularity on social media platforms. While LLM agents are reshaping the ecology of social media, there exists a current gap in conducting a comprehensive evaluation of their ability to comprehend media content, understand user behaviors, and make intricate decisions. To address this challenge, we introduce SoMe, a pioneering benchmark designed to evaluate social media agents equipped with various agent tools for accessing and analyzing social media data. SoMe comprises a diverse collection of 8 social media agent tasks, 9,164,284 posts, 6,591 user profiles, and 25,686 reports from various social media platforms and external websites, with 17,869 meticulously annotated task queries. Compared with the existing datasets and benchmarks for social media tasks, SoMe is the first to provide a versatile and realistic platform for LLM-based social media agents to handle diverse social media tasks. By extensive quantitative and qualitative analysis, we provide the first overview insight into the performance of mainstream agentic LLMs in realistic social media environments and identify several limitations. Our evaluation reveals that both the current closed-source and open-source LLMs cannot handle social media agent tasks satisfactorily. SoMe provides a challenging yet meaningful testbed for future social media agents. Our code and data are available at https://github.com/LivXue/SoMe
Abstract:Detecting toxic content using language models is important but challenging. While large language models (LLMs) have demonstrated strong performance in understanding Chinese, recent studies show that simple character substitutions in toxic Chinese text can easily confuse the state-of-the-art (SOTA) LLMs. In this paper, we highlight the multimodal nature of Chinese language as a key challenge for deploying LLMs in toxic Chinese detection. First, we propose a taxonomy of 3 perturbation strategies and 8 specific approaches in toxic Chinese content. Then, we curate a dataset based on this taxonomy, and benchmark 9 SOTA LLMs (from both the US and China) to assess if they can detect perturbed toxic Chinese text. Additionally, we explore cost-effective enhancement solutions like in-context learning (ICL) and supervised fine-tuning (SFT). Our results reveal two important findings. (1) LLMs are less capable of detecting perturbed multimodal Chinese toxic contents. (2) ICL or SFT with a small number of perturbed examples may cause the LLMs "overcorrect'': misidentify many normal Chinese contents as toxic.




Abstract:Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.