Abstract:Long-form question answering (LFQA) aims at answering complex, open-ended questions with detailed, paragraph-length responses. The de facto paradigm of LFQA necessitates two procedures: information retrieval, which searches for relevant supporting facts, and information synthesis, which integrates these facts into a coherent answer. In this paper, we introduce WebCPM, the first Chinese LFQA dataset. One unique feature of WebCPM is that its information retrieval is based on interactive web search, which engages with a search engine in real time. Following WebGPT, we develop a web search interface. We recruit annotators to search for relevant information using our interface and then answer questions. Meanwhile, the web search behaviors of our annotators would be recorded. In total, we collect 5,500 high-quality question-answer pairs, together with 14,315 supporting facts and 121,330 web search actions. We fine-tune pre-trained language models to imitate human behaviors for web search and to generate answers based on the collected facts. Our LFQA pipeline, built on these fine-tuned models, generates answers that are no worse than human-written ones in 32.5% and 47.5% of the cases on our dataset and DuReader, respectively.
Abstract:Textual adversarial samples play important roles in multiple subfields of NLP research, including security, evaluation, explainability, and data augmentation. However, most work mixes all these roles, obscuring the problem definitions and research goals of the security role that aims to reveal the practical concerns of NLP models. In this paper, we rethink the research paradigm of textual adversarial samples in security scenarios. We discuss the deficiencies in previous work and propose our suggestions that the research on the Security-oriented adversarial NLP (SoadNLP) should: (1) evaluate their methods on security tasks to demonstrate the real-world concerns; (2) consider real-world attackers' goals, instead of developing impractical methods. To this end, we first collect, process, and release a security datasets collection Advbench. Then, we reformalize the task and adjust the emphasis on different goals in SoadNLP. Next, we propose a simple method based on heuristic rules that can easily fulfill the actual adversarial goals to simulate real-world attack methods. We conduct experiments on both the attack and the defense sides on Advbench. Experimental results show that our method has higher practical value, indicating that the research paradigm in SoadNLP may start from our new benchmark. All the code and data of Advbench can be obtained at \url{https://github.com/thunlp/Advbench}.
Abstract:In linguistics, a sememe is defined as the minimum semantic unit of languages. Sememe knowledge bases (KBs), which are built by manually annotating words with sememes, have been successfully applied to various NLP tasks. However, existing sememe KBs only cover a few languages, which hinders the wide utilization of sememes. To address this issue, the task of sememe prediction for BabelNet synsets (SPBS) is presented, aiming to build a multilingual sememe KB based on BabelNet, a multilingual encyclopedia dictionary. By automatically predicting sememes for a BabelNet synset, the words in many languages in the synset would obtain sememe annotations simultaneously. However, previous SPBS methods have not taken full advantage of the abundant information in BabelNet. In this paper, we utilize the multilingual synonyms, multilingual glosses and images in BabelNet for SPBS. We design a multimodal information fusion model to encode and combine this information for sememe prediction. Experimental results show the substantial outperformance of our model over previous methods (about 10 MAP and F1 scores). All the code and data of this paper can be obtained at https://github.com/thunlp/MSGI.
Abstract:It is very common to use quotations (quotes) to make our writings more elegant or convincing. To help people find appropriate quotes efficiently, the task of quote recommendation is presented, aiming to recommend quotes that fit the current context of writing. There have been various quote recommendation approaches, but they are evaluated on different unpublished datasets. To facilitate the research on this task, we build a large and fully open quote recommendation dataset called QuoteR, which comprises three parts including English, standard Chinese and classical Chinese. Any part of it is larger than previous unpublished counterparts. We conduct an extensive evaluation of existing quote recommendation methods on QuoteR. Furthermore, we propose a new quote recommendation model that significantly outperforms previous methods on all three parts of QuoteR. All the code and data of this paper are available at https://github.com/thunlp/QuoteR.
Abstract:Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic. To this end, we propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features: (1) Hierarchical benchmark framework, where datasets are principally selected and organized with a language capability-task-dataset hierarchy. (2) Multi-level scoring strategy, where different levels of model performance are provided based on the hierarchical framework. To facilitate CUGE, we provide a public leaderboard that can be customized to support flexible model judging criteria. Evaluation results on representative pre-trained language models indicate ample room for improvement towards general-purpose language intelligence. CUGE is publicly available at cuge.baai.ac.cn.
Abstract:Backdoor attacks are a kind of emergent security threat in deep learning. When a deep neural model is injected with a backdoor, it will behave normally on standard inputs but give adversary-specified predictions once the input contains specific backdoor triggers. Current textual backdoor attacks have poor attack performance in some tough situations. In this paper, we find two simple tricks that can make existing textual backdoor attacks much more harmful. The first trick is to add an extra training task to distinguish poisoned and clean data during the training of the victim model, and the second one is to use all the clean training data rather than remove the original clean data corresponding to the poisoned data. These two tricks are universally applicable to different attack models. We conduct experiments in three tough situations including clean data fine-tuning, low poisoning rate, and label-consistent attacks. Experimental results show that the two tricks can significantly improve attack performance. This paper exhibits the great potential harmfulness of backdoor attacks. All the code and data will be made public to facilitate further research.
Abstract:Adversarial attacks and backdoor attacks are two common security threats that hang over deep learning. Both of them harness task-irrelevant features of data in their implementation. Text style is a feature that is naturally irrelevant to most NLP tasks, and thus suitable for adversarial and backdoor attacks. In this paper, we make the first attempt to conduct adversarial and backdoor attacks based on text style transfer, which is aimed at altering the style of a sentence while preserving its meaning. We design an adversarial attack method and a backdoor attack method, and conduct extensive experiments to evaluate them. Experimental results show that popular NLP models are vulnerable to both adversarial and backdoor attacks based on text style transfer -- the attack success rates can exceed 90% without much effort. It reflects the limited ability of NLP models to handle the feature of text style that has not been widely realized. In addition, the style transfer-based adversarial and backdoor attack methods show superiority to baselines in many aspects. All the code and data of this paper can be obtained at https://github.com/thunlp/StyleAttack.
Abstract:In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, efficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference. (1) We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch. (2) We explore the best practice of prompt tuning with large-scale PLMs. Compared with conventional fine-tuning, prompt tuning significantly reduces the number of task-specific parameters. (3) We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources. Based on our cost-effective pipeline, we pre-train two models: an encoder-decoder bilingual model with 11 billion parameters (CPM-2) and its corresponding MoE version with 198 billion parameters. In our experiments, we compare CPM-2 with mT5 on downstream tasks. Experimental results show that CPM-2 has excellent general language intelligence. Moreover, we validate the efficiency of InfMoE when conducting inference of large-scale models having tens of billions of parameters on a single GPU. All source code and model parameters are available at https://github.com/TsinghuaAI/CPM.
Abstract:Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks. Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated, presenting serious security threats to real-world applications. Since existing textual backdoor attacks pay little attention to the invisibility of backdoors, they can be easily detected and blocked. In this work, we present invisible backdoors that are activated by a learnable combination of word substitution. We show that NLP models can be injected with backdoors that lead to a nearly 100% attack success rate, whereas being highly invisible to existing defense strategies and even human inspections. The results raise a serious alarm to the security of NLP models, which requires further research to be resolved. All the data and code of this paper are released at https://github.com/thunlp/BkdAtk-LWS.
Abstract:Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no focus on understanding or evaluating the semantics of poetry. Therefore, we propose a novel task to assess a model's semantic understanding of poetry by poem matching. Specifically, this task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry. To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation. Then we retrieve similar lines of poetry with the lines in a poetry corpus as negative choices. We name the dataset Chinese Classical Poetry Matching Dataset (CCPM) and release it at https://github.com/THUNLP-AIPoet/CCPM. We hope this dataset can further enhance the study on incorporating deep semantics into the understanding and generation system of Chinese classical poetry. We also preliminarily run two variants of BERT on this dataset as the baselines for this dataset.