Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Unifying Generative Models with GFlowNets


Sep 06, 2022
Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, Yoshua Bengio

* Accepted to ICML 2022 Beyond Bayes workshop 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Building Robust Ensembles via Margin Boosting


Jun 07, 2022
Dinghuai Zhang, Hongyang Zhang, Aaron Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala

* Accepted by ICML 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Biological Sequence Design with GFlowNets


Mar 02, 2022
Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio

* 15 pages, 3 figures. Code available at: https://github.com/MJ10/BioSeq-GFN-AL 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Generative Flow Networks for Discrete Probabilistic Modeling


Feb 03, 2022
Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, Yoshua Bengio

* 17 pages; code: https://github.com/zdhNarsil/EB_GFN 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond


Oct 06, 2021
Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron Courville


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization


Jun 11, 2021
Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioannis Mitliagkas, Irina Rish


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?


Jun 05, 2021
Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron Courville

* Accepted to ICML2021 as long talk 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Neural Approximate Sufficient Statistics for Implicit Models


Oct 20, 2020
Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville, Zhanxing Zhu


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Informative Dropout for Robust Representation Learning: A Shape-bias Perspective


Aug 10, 2020
Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang

* Accepted to ICML2020. Code is available at https://github.com/bfshi/InfoDrop 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework


Feb 21, 2020
Dinghuai Zhang, Mao Ye, Chengyue Gong, Zhanxing Zhu, Qiang Liu


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>