Department of Computer Science and Software Engineering, Concordia University, Canada
Abstract:The growing Machine Learning (ML) services require extensive collections of user data, which may inadvertently include people's private information irrelevant to the services. Various studies have been proposed to protect private attributes by removing them from the data while maintaining the utilities of the data for downstream tasks. Nevertheless, as we theoretically and empirically show in the paper, these methods reveal severe vulnerability because of a common weakness rooted in their adversarial training based strategies. To overcome this limitation, we propose a novel approach, PASS, designed to stochastically substitute the original sample with another one according to certain probabilities, which is trained with a novel loss function soundly derived from information-theoretic objective defined for utility-preserving private attributes protection. The comprehensive evaluation of PASS on various datasets of different modalities, including facial images, human activity sensory signals, and voice recording datasets, substantiates PASS's effectiveness and generalizability.
Abstract:Mobile GUI agents aim to autonomously complete user-instructed tasks across mobile apps. Recent advances in Multimodal Large Language Models (MLLMs) enable these agents to interpret UI screens, identify actionable elements, and perform interactions such as tapping or typing. However, existing agents remain reactive: they reason only over the current screen and lack a structured model of app navigation flow, limiting their ability to understand context, detect unexpected outcomes, and recover from errors. We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM). We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution. MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention. These agents collaborate to dynamically construct FSMs in real time based on perception data extracted from the UI screen, allowing the GUI agents to track navigation progress and flow, validate action outcomes through pre- and post-conditions of the states, and recover from errors by rolling back to previously stable states. Our evaluation results on two challenging cross-app benchmarks, Mobile-Eval-E and SPA-Bench, show that MAPLE outperforms the state-of-the-art baseline, improving task success rate by up to 12%, recovery success by 13.8%, and action accuracy by 6.5%. Our results highlight the importance of structured state modeling in guiding mobile GUI agents during task execution. Moreover, our FSM representation can be integrated into future GUI agent architectures as a lightweight, model-agnostic memory layer to support structured planning, execution verification, and error recovery.
Abstract:To develop trustworthy Vision-Language Models (VLMs), it is essential to address adversarial robustness and hallucination mitigation, both of which impact factual accuracy in high-stakes applications such as defense and healthcare. Existing methods primarily focus on either adversarial defense or hallucination post-hoc correction, leaving a gap in unified robustness strategies. We introduce \textbf{Hydra}, an adaptive agentic framework that enhances plug-in VLMs through iterative reasoning, structured critiques, and cross-model verification, improving both resilience to adversarial perturbations and intrinsic model errors. Hydra employs an Action-Critique Loop, where it retrieves and critiques visual information, leveraging Chain-of-Thought (CoT) and In-Context Learning (ICL) techniques to refine outputs dynamically. Unlike static post-hoc correction methods, Hydra adapts to both adversarial manipulations and intrinsic model errors, making it robust to malicious perturbations and hallucination-related inaccuracies. We evaluate Hydra on four VLMs, three hallucination benchmarks, two adversarial attack strategies, and two adversarial defense methods, assessing performance on both clean and adversarial inputs. Results show that Hydra surpasses plug-in VLMs and state-of-the-art (SOTA) dehallucination methods, even without explicit adversarial defenses, demonstrating enhanced robustness and factual consistency. By bridging adversarial resistance and hallucination mitigation, Hydra provides a scalable, training-free solution for improving the reliability of VLMs in real-world applications.
Abstract:When using LLMs to address Non-Functional Requirements (NFRs), developers may behave differently (e.g., expressing the same NFR in different words). Robust LLMs should output consistent results across these variations; however, this aspect remains underexplored. We propose RobuNFR for evaluating the robustness of LLMs in NFR-aware code generation across four NFR dimensions: design, readability, reliability, and performance, using three methodologies: prompt variation, regression testing, and diverse workflows. Our experiments show that RobuNFR reveals robustness issues in the tested LLMs when considering NFRs in code generation. Specifically, under prompt variation, including NFRs leads to a decrease in Pass@1 by up to 39 percent and an increase in the standard deviation from 0.48 to 2.48 compared to the baseline without NFRs (i.e., Function-Only). While incorporating NFRs generally improves overall NFR metrics, it also results in higher prompt sensitivity. In regression settings, some LLMs exhibit differences across versions, with improvements in one aspect (e.g., reduced code smells) often accompanied by regressions in another (e.g., decreased correctness), revealing inconsistencies that challenge their robustness. When varying workflows, the tested LLMs show significantly different NFR-aware code generation capabilities between two workflows: (1) integrating NFRs and functional requirements into the initial prompt and (2) enhancing Function-Only-generated code with the same NFR.
Abstract:Recent advances in code generation have illuminated the potential of employing large language models (LLMs) for general-purpose programming languages such as Python and C++, opening new opportunities for automating software development and enhancing programmer productivity. The potential of LLMs in software programming has sparked significant interest in exploring automated hardware generation and automation. Although preliminary endeavors have been made to adopt LLMs in generating hardware description languages (HDLs), several challenges persist in this direction. First, the volume of available HDL training data is substantially smaller compared to that for software programming languages. Second, the pre-trained LLMs, mainly tailored for software code, tend to produce HDL designs that are more error-prone. Third, the generation of HDL requires a significantly higher number of tokens compared to software programming, leading to inefficiencies in cost and energy consumption. To tackle these challenges, this paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design. Although code generation for domain-specific programming languages is not new in the literature, we aim to provide experimental results, insights, benchmarks, and evaluation infrastructure to investigate the suitability of HLS over low-level HDLs for LLM-assisted hardware design generation. To achieve this, we first finetune pre-trained models for HLS-based hardware generation, using a collected dataset with text prompts and corresponding reference HLS designs. An LLM-assisted framework is then proposed to automate end-to-end hardware code generation, which also investigates the impact of chain-of-thought and feedback loops promoting techniques on HLS-design generation. Limited by the timeframe of this research, we plan to evaluate more advanced reasoning models in the future.
Abstract:The nature of modern data is increasingly real-time, making outlier detection crucial in any data-related field, such as finance for fraud detection and healthcare for monitoring patient vitals. Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data due to the need for extensive recalculations with each new data point, limiting their application in real-time environments. While the Incremental LOF (ILOF) algorithm has been developed to tackle the challenges of online anomaly detection, it remains computationally expensive when processing large streams of data points, and its detection performance may degrade after a certain threshold of points have streamed in. In this paper, we propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm. The EILOF algorithm only computes the LOF scores of new points without altering the LOF scores of existing data points. Although exact LOF scores have not yet been computed for the existing points in the new algorithm, datasets often contain noise, and minor deviations in LOF score calculations do not necessarily degrade detection performance. In fact, such deviations can sometimes enhance outlier detection. We systematically tested this approach on both simulated and real-world datasets, demonstrating that EILOF outperforms ILOF as the volume of streaming data increases across various scenarios. The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases compared to the ILOF algorithm.
Abstract:Vision Transformers (ViT) is known for its scalability. In this work, we target to scale down a ViT to fit in an environment with dynamic-changing resource constraints. We observe that smaller ViTs are intrinsically the sub-networks of a larger ViT with different widths. Thus, we propose a general framework, named Scala, to enable a single network to represent multiple smaller ViTs with flexible inference capability, which aligns with the inherent design of ViT to vary from widths. Concretely, Scala activates several subnets during training, introduces Isolated Activation to disentangle the smallest sub-network from other subnets, and leverages Scale Coordination to ensure each sub-network receives simplified, steady, and accurate learning objectives. Comprehensive empirical validations on different tasks demonstrate that with only one-shot training, Scala learns slimmable representation without modifying the original ViT structure and matches the performance of Separate Training. Compared with the prior art, Scala achieves an average improvement of 1.6% on ImageNet-1K with fewer parameters.
Abstract:The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. In other fields, such as natural language processing, foundation models pre-trained on large datasets have achieved exceptional success in transfer learning, effectively leveraging latent features to achieve high performance on tasks with limited data. Despite this progress, the concept of foundation models remains underexplored in materials science. Here, we present a foundation model specifically designed for composite materials. Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features. During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data. These findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.
Abstract:In this paper, we propose a radio-based passive target tracking algorithm using multipath measurements, including the angle of arrival and relative distance. We focus on a scenario in which a mobile receiver continuously receives radio signals from a transmitter located at an unknown position. The receiver utilizes multipath measurements extracted from the received signal to jointly localize the transmitter and the scatterers over time, with scatterers comprising a moving target and stationary objects that can reflect signals within the environment. We develop a comprehensive probabilistic model for the target tracking problem, incorporating the localization of the transmitter and scatterers, the identification of false alarms and missed detections in the measurements, and the association between scatterers and measurements. We employ a belief propagation approach to compute the posterior distributions of the positions of the scatterers and the transmitter. Additionally, we introduce a particle implementation for the belief propagation method. Simulation results demonstrate that our proposed algorithm outperforms existing benchmark methods in terms of target tracking accuracy.
Abstract:This paper focuses on optimizing the long-term average age of information (AoI) in device-to-device (D2D) networks through age-aware link scheduling. The problem is naturally formulated as a Markov decision process (MDP). However, finding the optimal policy for the formulated MDP in its original form is challenging due to the intertwined AoI dynamics of all D2D links. To address this, we propose an age-aware stationary randomized policy that determines the probability of scheduling each link in each time slot based on the AoI of all links and the statistical channel state information among all transceivers. By employing the Lyapunov optimization framework, our policy aims to minimize the Lyapunov drift in every time slot. Nonetheless, this per-slot minimization problem is nonconvex due to cross-link interference in D2D networks, posing significant challenges for real-time decision-making. After analyzing the permutation equivariance property of the optimal solutions to the per-slot problem, we apply a message passing neural network (MPNN), a type of graph neural network that also exhibits permutation equivariance, to optimize the per-slot problem in an unsupervised learning manner. Simulation results demonstrate the superior performance of the proposed age-aware stationary randomized policy over baselines and validate the scalability of our method.