Abstract:This paper presents the results of the shared task on Chinese metaphor generation, hosted at the 13th CCF Conference on Natural Language Processing and Chinese Computing (NLPCC 2024). The goal of this shared task is to generate Chinese metaphors using machine learning techniques and effectively identifying basic components of metaphorical sentences. It is divided into two subtasks: 1) Metaphor Generation, which involves creating a metaphor from a provided tuple consisting of TENOR, GROUND, and VEHICLE. The goal here is to synthesize a metaphor that connects the subject (i.e. TENOR) with the object (i.e. VEHICLE), guided by the concept of the GROUND. 2) Metaphor Components Identification, which extracts the most fitting TENORs, GROUNDs, and VEHICLEs from a metaphorical sentence. This component requires the identification of the most fitting metaphor elements that correspond to the specified grounds. In addition to overall results, we report on the setup and insights from the metaphor generation shared task, which attracted a total of 4 participating teams across both subtasks.




Abstract:Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVLMs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks primarily focus on facts or specific topic-related knowledge contained within individual images. However, they often overlook the associative relations between multiple images, which require the identification and analysis of similarities among entities or content present in different images. Therefore, we propose the multi-image relation association task and a meticulously curated Multi-granularity Multi-image Relational Association (MMRA) benchmark, comprising 1,024 samples. In order to systematically and comprehensively evaluate current LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent) at two granularity levels (i.e., image and entity) according to the relations in ConceptNet. Our experiments reveal that on the MMRA benchmark, current multi-image LVLMs exhibit distinct advantages and disadvantages across various subtasks. Notably, fine-grained, entity-level multi-image perception tasks pose a greater challenge for LVLMs compared to image-level tasks. Moreover, LVLMs perform poorly on spatial-related tasks, indicating that LVLMs still have limited spatial awareness. Additionally, our findings indicate that while LVLMs demonstrate a strong capability to perceive image details, enhancing their ability to associate information across multiple images hinges on improving the reasoning capabilities of their language model component. Moreover, we explored the ability of LVLMs to perceive image sequences within the context of our multi-image association task. Our experiments show that the majority of current LVLMs do not adequately model image sequences during the pre-training process.




Abstract:Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate \textbf{MMRA} benchmark, a \textbf{M}ulti-granularity \textbf{M}ulti-image \textbf{R}elational \textbf{A}ssociation benchmark, consisted of \textbf{1026} samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain \textbf{11 subtasks} (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "\textbf{image}" and "\textbf{entity}") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htt\url{https://github.com/Wusiwei0410/MMRA}.




Abstract:Large Language Models (LLMs) excel in fluency but risk producing inaccurate content, called "hallucinations." This paper outlines a standardized process for categorizing fine-grained hallucination types and proposes an innovative framework--the Progressive Fine-grained Model Editor (PFME)--specifically designed to detect and correct fine-grained hallucinations in LLMs. PFME consists of two collaborative modules: the Real-time Fact Retrieval Module and the Fine-grained Hallucination Detection and Editing Module. The former identifies key entities in the document and retrieves the latest factual evidence from credible sources. The latter further segments the document into sentence-level text and, based on relevant evidence and previously edited context, identifies, locates, and edits each sentence's hallucination type. Experimental results on FavaBench and FActScore demonstrate that PFME outperforms existing methods in fine-grained hallucination detection tasks. Particularly, when using the Llama3-8B-Instruct model, PFME's performance in fine-grained hallucination detection with external knowledge assistance improves by 8.7 percentage points (pp) compared to ChatGPT. In editing tasks, PFME further enhances the FActScore of FActScore-Alpaca13B and FActScore-ChatGPT datasets, increasing by 16.2pp and 4.6pp, respectively.
Abstract:Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.
Abstract:Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
Abstract:Radiology Report Generation (RRG) has achieved significant progress with the advancements of multimodal generative models. However, the evaluation in the domain suffers from a lack of fair and robust metrics. We reveal that, high performance on RRG with existing lexical-based metrics (e.g. BLEU) might be more of a mirage - a model can get a high BLEU only by learning the template of reports. This has become an urgent problem for RRG due to the highly patternized nature of these reports. In this work, we un-intuitively approach this problem by proposing the Layman's RRG framework, a layman's terms-based dataset, evaluation and training framework that systematically improves RRG with day-to-day language. We first contribute the translated Layman's terms dataset. Building upon the dataset, we then propose a semantics-based evaluation method, which is proved to mitigate the inflated numbers of BLEU and provides fairer evaluation. Last, we show that training on the layman's terms dataset encourages models to focus on the semantics of the reports, as opposed to overfitting to learning the report templates. We reveal a promising scaling law between the number of training examples and semantics gain provided by our dataset, compared to the inverse pattern brought by the original formats. Our code is available at \url{https://github.com/hegehongcha/LaymanRRG}.




Abstract:Machine Translation (MT) has developed rapidly since the release of Large Language Models and current MT evaluation is performed through comparison with reference human translations or by predicting quality scores from human-labeled data. However, these mainstream evaluation methods mainly focus on fluency and factual reliability, whilst paying little attention to figurative quality. In this paper, we investigate the figurative quality of MT and propose a set of human evaluation metrics focused on the translation of figurative language. We additionally present a multilingual parallel metaphor corpus generated by post-editing. Our evaluation protocol is designed to estimate four aspects of MT: Metaphorical Equivalence, Emotion, Authenticity, and Quality. In doing so, we observe that translations of figurative expressions display different traits from literal ones.




Abstract:Lay summarisation aims to produce summaries of scientific articles that are comprehensible to non-expert audiences. However, previous work assumes a one-size-fits-all approach, where the content and style of the produced summary are entirely dependent on the data used to train the model. In practice, audiences with different levels of expertise will have specific needs, impacting what content should appear in a lay summary and how it should be presented. Aiming to address this, we propose ATLAS, a novel abstractive summarisation approach that can control various properties that contribute to the overall "layness" of the generated summary using targeted control attributes. We evaluate ATLAS on a combination of biomedical lay summarisation datasets, where it outperforms state-of-the-art baselines using mainstream summarisation metrics. Additional analyses provided on the discriminatory power and emergent influence of our selected controllable attributes further attest to the effectiveness of our approach.




Abstract:The long-standing one-to-many problem of gold standard responses in open-domain dialogue systems presents challenges for automatic evaluation metrics. Though prior works have demonstrated some success by applying powerful Large Language Models (LLMs), existing approaches still struggle with the one-to-many problem, and exhibit subpar performance in domain-specific scenarios. We assume the commonsense reasoning biases within LLMs may hinder their performance in domainspecific evaluations. To address both issues, we propose a novel framework SLIDE (Small and Large Integrated for Dialogue Evaluation), that leverages both a small, specialised model (SLM), and LLMs for the evaluation of open domain dialogues. Our approach introduces several techniques: (1) Contrastive learning to differentiate between robust and non-robust response embeddings; (2) A novel metric for semantic sensitivity that combines embedding cosine distances with similarity learned through neural networks, and (3) a strategy for incorporating the evaluation results from both the SLM and LLMs. Our empirical results demonstrate that our approach achieves state-of-the-art performance in both the classification and evaluation tasks, and additionally the SLIDE evaluator exhibits better correlation with human judgements. Our code is available at https:// github.com/hegehongcha/SLIDE-ACL2024.