Abstract:Understanding and modeling the relationship between language and sound is critical for applications such as music information retrieval,text-guided music generation, and audio captioning. Central to these tasks is the use of joint language-audio embedding spaces, which map textual descriptions and auditory content into a shared embedding space. While multimodal embedding models such as MS-CLAP, LAION-CLAP, and MuQ-MuLan have shown strong performance in aligning language and audio, their correspondence to human perception of timbre, a multifaceted attribute encompassing qualities such as brightness, roughness, and warmth, remains underexplored. In this paper, we evaluate the above three joint language-audio embedding models on their ability to capture perceptual dimensions of timbre. Our findings show that LAION-CLAP consistently provides the most reliable alignment with human-perceived timbre semantics across both instrumental sounds and audio effects.




Abstract:Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints. While demonstrating impressive capabilities in STEM subjects, current LLMs easily fail in this task, generating ill-written music even when equipped with modern techniques like In-Context-Learning and Chain-of-Thoughts. To further explore and enhance LLMs' potential in music composition by leveraging their reasoning ability and the large knowledge base in music history and theory, we propose ComposerX, an agent-based symbolic music generation framework. We find that applying a multi-agent approach significantly improves the music composition quality of GPT-4. The results demonstrate that ComposerX is capable of producing coherent polyphonic music compositions with captivating melodies, while adhering to user instructions.