Abstract:Pre-trained vision-language models have inspired much research on few-shot learning. However, with only a few training images, there exist two crucial problems: (1) the visual feature distributions are easily distracted by class-irrelevant information in images, and (2) the alignment between the visual and language feature distributions is difficult. To deal with the distraction problem, we propose a Selective Attack module, which consists of trainable adapters that generate spatial attention maps of images to guide the attacks on class-irrelevant image areas. By messing up these areas, the critical features are captured and the visual distributions of image features are calibrated. To better align the visual and language feature distributions that describe the same object class, we propose a cross-modal distribution alignment module, in which we introduce a vision-language prototype for each class to align the distributions, and adopt the Earth Mover's Distance (EMD) to optimize the prototypes. For efficient computation, the upper bound of EMD is derived. In addition, we propose an augmentation strategy to increase the diversity of the images and the text prompts, which can reduce overfitting to the few-shot training images. Extensive experiments on 11 datasets demonstrate that our method consistently outperforms prior arts in few-shot learning. The implementation code will be available at https://github.com/bhrqw/SADA.
Abstract:Continual learning aims to enable a model to incrementally learn knowledge from sequentially arrived data. Previous works adopt the conventional classification architecture, which consists of a feature extractor and a classifier. The feature extractor is shared across sequentially arrived tasks or classes, but one specific group of weights of the classifier corresponding to one new class should be incrementally expanded. Consequently, the parameters of a continual learner gradually increase. Moreover, as the classifier contains all historical arrived classes, a certain size of the memory is usually required to store rehearsal data to mitigate classifier bias and catastrophic forgetting. In this paper, we propose a non-incremental learner, named AttriCLIP, to incrementally extract knowledge of new classes or tasks. Specifically, AttriCLIP is built upon the pre-trained visual-language model CLIP. Its image encoder and text encoder are fixed to extract features from both images and text. Text consists of a category name and a fixed number of learnable parameters which are selected from our designed attribute word bank and serve as attributes. As we compute the visual and textual similarity for classification, AttriCLIP is a non-incremental learner. The attribute prompts, which encode the common knowledge useful for classification, can effectively mitigate the catastrophic forgetting and avoid constructing a replay memory. We evaluate our AttriCLIP and compare it with CLIP-based and previous state-of-the-art continual learning methods in realistic settings with domain-shift and long-sequence learning. The results show that our method performs favorably against previous state-of-the-arts. The implementation code can be available at https://github.com/bhrqw/AttriCLIP.
Abstract:Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models. Although diffusion models have shown promise in analyzing functional magnetic resonance imaging (fMRI) data, including reconstructing high-quality images consistent with original visual stimuli, their accuracy in extracting semantic and silhouette information from brain signals remains limited. In this regard, we propose a novel approach, referred to as Controllable Mind Visual Diffusion Model (CMVDM). CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks. Additionally, a residual block is incorporated to capture information beyond semantic and silhouette features. We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette. Through extensive experimentation, we demonstrate that CMVDM outperforms existing state-of-the-art methods both qualitatively and quantitatively.
Abstract:CLIP (Contrastive Language-Image Pretraining) is well-developed for open-vocabulary zero-shot image-level recognition, while its applications in pixel-level tasks are less investigated, where most efforts directly adopt CLIP features without deliberative adaptations. In this work, we first demonstrate the necessity of image-pixel CLIP feature adaption, then provide Multi-View Prompt learning (MVP-SEG) as an effective solution to achieve image-pixel adaptation and to solve open-vocabulary semantic segmentation. Concretely, MVP-SEG deliberately learns multiple prompts trained by our Orthogonal Constraint Loss (OCLoss), by which each prompt is supervised to exploit CLIP feature on different object parts, and collaborative segmentation masks generated by all prompts promote better segmentation. Moreover, MVP-SEG introduces Global Prompt Refining (GPR) to further eliminate class-wise segmentation noise. Experiments show that the multi-view prompts learned from seen categories have strong generalization to unseen categories, and MVP-SEG+ which combines the knowledge transfer stage significantly outperforms previous methods on several benchmarks. Moreover, qualitative results justify that MVP-SEG does lead to better focus on different local parts.
Abstract:Face animation has achieved much progress in computer vision. However, prevailing GAN-based methods suffer from unnatural distortions and artifacts due to sophisticated motion deformation. In this paper, we propose a Face Animation framework with an attribute-guided Diffusion Model (FADM), which is the first work to exploit the superior modeling capacity of diffusion models for photo-realistic talking-head generation. To mitigate the uncontrollable synthesis effect of the diffusion model, we design an Attribute-Guided Conditioning Network (AGCN) to adaptively combine the coarse animation features and 3D face reconstruction results, which can incorporate appearance and motion conditions into the diffusion process. These specific designs help FADM rectify unnatural artifacts and distortions, and also enrich high-fidelity facial details through iterative diffusion refinements with accurate animation attributes. FADM can flexibly and effectively improve existing animation videos. Extensive experiments on widely used talking-head benchmarks validate the effectiveness of FADM over prior arts.
Abstract:The recent detection transformer (DETR) has advanced object detection, but its application on resource-constrained devices requires massive computation and memory resources. Quantization stands out as a solution by representing the network in low-bit parameters and operations. However, there is a significant performance drop when performing low-bit quantized DETR (Q-DETR) with existing quantization methods. We find that the bottlenecks of Q-DETR come from the query information distortion through our empirical analyses. This paper addresses this problem based on a distribution rectification distillation (DRD). We formulate our DRD as a bi-level optimization problem, which can be derived by generalizing the information bottleneck (IB) principle to the learning of Q-DETR. At the inner level, we conduct a distribution alignment for the queries to maximize the self-information entropy. At the upper level, we introduce a new foreground-aware query matching scheme to effectively transfer the teacher information to distillation-desired features to minimize the conditional information entropy. Extensive experimental results show that our method performs much better than prior arts. For example, the 4-bit Q-DETR can theoretically accelerate DETR with ResNet-50 backbone by 6.6x and achieve 39.4% AP, with only 2.6% performance gaps than its real-valued counterpart on the COCO dataset.
Abstract:Image super-resolution (SR) has attracted increasing attention due to its wide applications. However, current SR methods generally suffer from over-smoothing and artifacts, and most work only with fixed magnifications. This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution. IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework, where the implicit neural representation is adopted in the decoding process to learn continuous-resolution representation. Furthermore, we design a scale-controllable conditioning mechanism that consists of a low-resolution (LR) conditioning network and a scaling factor. The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output, which enables the model to accommodate the continuous-resolution requirement. Extensive experiments validate the effectiveness of our IDM and demonstrate its superior performance over prior arts.
Abstract:Despite advancements in generic object detection, there remains a performance gap in detecting small objects compared to normal-scale objects. We for the first time observe that existing bounding box regression methods tend to produce distorted gradients for small objects and result in less accurate localization. To address this issue, we present a novel Confidence-driven Bounding Box Localization (C-BBL) method to rectify the gradients. C-BBL quantizes continuous labels into grids and formulates two-hot ground truth labels. In prediction, the bounding box head generates a confidence distribution over the grids. Unlike the bounding box regression paradigms in conventional detectors, we introduce a classification-based localization objective through cross entropy between ground truth and predicted confidence distribution, generating confidence-driven gradients. Additionally, C-BBL describes a uncertainty loss based on distribution entropy in labels and predictions to further reduce the uncertainty in small object localization. The method is evaluated on multiple detectors using three object detection benchmarks and consistently improves baseline detectors, achieving state-of-the-art performance. We also demonstrate the generalizability of C-BBL to different label systems and effectiveness for high resolution detection, which validates its prospect as a general solution.
Abstract:Binary neural networks (BNNs) have received ever-increasing popularity for their great capability of reducing storage burden as well as quickening inference time. However, there is a severe performance drop compared with real-valued networks, due to its intrinsic frequent weight oscillation during training. In this paper, we introduce a Resilient Binary Neural Network (ReBNN) to mitigate the frequent oscillation for better BNNs' training. We identify that the weight oscillation mainly stems from the non-parametric scaling factor. To address this issue, we propose to parameterize the scaling factor and introduce a weighted reconstruction loss to build an adaptive training objective. For the first time, we show that the weight oscillation is controlled by the balanced parameter attached to the reconstruction loss, which provides a theoretical foundation to parameterize it in back propagation. Based on this, we learn our ReBNN by calculating the balanced parameter based on its maximum magnitude, which can effectively mitigate the weight oscillation with a resilient training process. Extensive experiments are conducted upon various network models, such as ResNet and Faster-RCNN for computer vision, as well as BERT for natural language processing. The results demonstrate the overwhelming performance of our ReBNN over prior arts. For example, our ReBNN achieves 66.9% Top-1 accuracy with ResNet-18 backbone on the ImageNet dataset, surpassing existing state-of-the-arts by a significant margin. Our code is open-sourced at https://github.com/SteveTsui/ReBNN.
Abstract:Pedestrian detection in the wild remains a challenging problem especially for scenes containing serious occlusion. In this paper, we propose a novel feature learning method in the deep learning framework, referred to as Feature Calibration Network (FC-Net), to adaptively detect pedestrians under various occlusions. FC-Net is based on the observation that the visible parts of pedestrians are selective and decisive for detection, and is implemented as a self-paced feature learning framework with a self-activation (SA) module and a feature calibration (FC) module. In a new self-activated manner, FC-Net learns features which highlight the visible parts and suppress the occluded parts of pedestrians. The SA module estimates pedestrian activation maps by reusing classifier weights, without any additional parameter involved, therefore resulting in an extremely parsimony model to reinforce the semantics of features, while the FC module calibrates the convolutional features for adaptive pedestrian representation in both pixel-wise and region-based ways. Experiments on CityPersons and Caltech datasets demonstrate that FC-Net improves detection performance on occluded pedestrians up to 10% while maintaining excellent performance on non-occluded instances.