Abstract:Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
Abstract:Large Vision-Language Models (LVLMs) usually generate texts which satisfy context coherence but don't match the visual input. Such a hallucination issue hinders LVLMs' applicability in the real world. The key to solving hallucination in LVLM is to make the text generation rely more on the visual content. Most previous works choose to enhance/adjust the features/output of a specific modality (i.e., visual or textual) to alleviate hallucinations in LVLM, which do not explicitly or systematically enhance the visual reliance. In this paper, we comprehensively investigate the factors which may degenerate the visual reliance in text generation of LVLM from a Bayesian perspective. Based on our observations, we propose to mitigate hallucination in LVLM from three aspects. Firstly, we observe that not all visual tokens are informative in generating meaningful texts. We propose to evaluate and remove redundant visual tokens to avoid their disturbance. Secondly, LVLM may encode inappropriate prior information, making it lean toward generating unexpected words. We propose a simple yet effective way to rectify the prior from a Bayesian perspective. Thirdly, we observe that starting from certain steps, the posterior of next-token prediction conditioned on visual tokens may collapse to a prior distribution which does not depend on any informative visual tokens at all. Thus, we propose to stop further text generation to avoid hallucination. Extensive experiments on three benchmarks including POPE, CHAIR, and MME demonstrate that our method can consistently mitigate the hallucination issue of LVLM and performs favorably against previous state-of-the-arts.




Abstract:Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.




Abstract:Naive DDIM inversion process usually suffers from a trajectory deviation issue, i.e., the latent trajectory during reconstruction deviates from the one during inversion. To alleviate this issue, previous methods either learn to mitigate the deviation or design cumbersome compensation strategy to reduce the mismatch error, exhibiting substantial time and computation cost. In this work, we present a nearly free-lunch method (named FreeInv) to address the issue more effectively and efficiently. In FreeInv, we randomly transform the latent representation and keep the transformation the same between the corresponding inversion and reconstruction time-step. It is motivated from a statistical perspective that an ensemble of DDIM inversion processes for multiple trajectories yields a smaller trajectory mismatch error on expectation. Moreover, through theoretical analysis and empirical study, we show that FreeInv performs an efficient ensemble of multiple trajectories. FreeInv can be freely integrated into existing inversion-based image and video editing techniques. Especially for inverting video sequences, it brings more significant fidelity and efficiency improvements. Comprehensive quantitative and qualitative evaluation on PIE benchmark and DAVIS dataset shows that FreeInv remarkably outperforms conventional DDIM inversion, and is competitive among previous state-of-the-art inversion methods, with superior computation efficiency.
Abstract:Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.




Abstract:In real-world scenarios, the number of training samples across classes usually subjects to a long-tailed distribution. The conventionally trained network may achieve unexpected inferior performance on the rare class compared to the frequent class. Most previous works attempt to rectify the network bias from the data-level or from the classifier-level. Differently, in this paper, we identify that the bias towards the frequent class may be encoded into features, i.e., the rare-specific features which play a key role in discriminating the rare class are much weaker than the frequent-specific features. Based on such an observation, we introduce a simple yet effective approach, normalizing the parameters of Batch Normalization (BN) layer to explicitly rectify the feature bias. To achieve this end, we represent the Weight/Bias parameters of a BN layer as a vector, normalize it into a unit one and multiply the unit vector by a scalar learnable parameter. Through decoupling the direction and magnitude of parameters in BN layer to learn, the Weight/Bias exhibits a more balanced distribution and thus the strength of features becomes more even. Extensive experiments on various long-tailed recognition benchmarks (i.e., CIFAR-10/100-LT, ImageNet-LT and iNaturalist 2018) show that our method outperforms previous state-of-the-arts remarkably. The code and checkpoints are available at https://github.com/yuxiangbao/NBN.




Abstract:Domain Generalization (DG) aims to learn a model from multiple source domains to achieve satisfactory performance on unseen target domains. Recent works introduce CLIP to DG tasks due to its superior image-text alignment and zeros-shot performance. Previous methods either utilize full fine-tuning or prompt-learning paradigms to harness CLIP for DG tasks. Those works focus on avoiding catastrophic forgetting of the original knowledge encoded in CLIP but ignore that the knowledge encoded in CLIP in nature may contain domain-specific cues that constrain its domain generalization performance. In this paper, we propose a new perspective to harness CLIP for DG, i.e., attention head purification. We observe that different attention heads may encode different properties of an image and selecting heads appropriately may yield remarkable performance improvement across domains. Based on such observations, we purify the attention heads of CLIP from two levels, including task-level purification and domain-level purification. For task-level purification, we design head-aware LoRA to make each head more adapted to the task we considered. For domain-level purification, we perform head selection via a simple gating strategy. We utilize MMD loss to encourage masked head features to be more domain-invariant to emphasize more generalizable properties/heads. During training, we jointly perform task-level purification and domain-level purification. We conduct experiments on various representative DG benchmarks. Though simple, extensive experiments demonstrate that our method performs favorably against previous state-of-the-arts.




Abstract:Automatic prompt engineering aims to enhance the generation quality of large language models (LLMs). Recent works utilize feedbacks generated from erroneous cases to guide the prompt optimization. During inference, they may further retrieve several semantically-related exemplars and concatenate them to the optimized prompts to improve the performance. However, those works only utilize the feedback at the current step, ignoring historical and unseleccted feedbacks which are potentially beneficial. Moreover, the selection of exemplars only considers the general semantic relationship and may not be optimal in terms of task performance and matching with the optimized prompt. In this work, we propose an Exemplar-Guided Reflection with Memory mechanism (ERM) to realize more efficient and accurate prompt optimization. Specifically, we design an exemplar-guided reflection mechanism where the feedback generation is additionally guided by the generated exemplars. We further build two kinds of memory to fully utilize the historical feedback information and support more effective exemplar retrieval. Empirical evaluations show our method surpasses previous state-of-the-arts with less optimization steps, i.e., improving F1 score by 10.1 on LIAR dataset, and reducing half of the optimization steps on ProTeGi.
Abstract:Previous methods utilize the Neural Radiance Field (NeRF) for panoptic lifting, while their training and rendering speed are unsatisfactory. In contrast, 3D Gaussian Splatting (3DGS) has emerged as a prominent technique due to its rapid training and rendering speed. However, unlike NeRF, the conventional 3DGS may not satisfy the basic smoothness assumption as it does not rely on any parameterized structures to render (e.g., MLPs). Consequently, the conventional 3DGS is, in nature, more susceptible to noisy 2D mask supervision. In this paper, we propose a new method called PLGS that enables 3DGS to generate consistent panoptic segmentation masks from noisy 2D segmentation masks while maintaining superior efficiency compared to NeRF-based methods. Specifically, we build a panoptic-aware structured 3D Gaussian model to introduce smoothness and design effective noise reduction strategies. For the semantic field, instead of initialization with structure from motion, we construct reliable semantic anchor points to initialize the 3D Gaussians. We then use these anchor points as smooth regularization during training. Additionally, we present a self-training approach using pseudo labels generated by merging the rendered masks with the noisy masks to enhance the robustness of PLGS. For the instance field, we project the 2D instance masks into 3D space and match them with oriented bounding boxes to generate cross-view consistent instance masks for supervision. Experiments on various benchmarks demonstrate that our method outperforms previous state-of-the-art methods in terms of both segmentation quality and speed.
Abstract:In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.