Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Streaming Multi-talker Speech Recognition with Joint Speaker Identification

Apr 05, 2021
Liang Lu, Naoyuki Kanda, Jinyu Li, Yifan Gong

In multi-talker scenarios such as meetings and conversations, speech processing systems are usually required to transcribe the audio as well as identify the speakers for downstream applications. Since overlapped speech is common in this case, conventional approaches usually address this problem in a cascaded fashion that involves speech separation, speech recognition and speaker identification that are trained independently. In this paper, we propose Streaming Unmixing, Recognition and Identification Transducer (SURIT) -- a new framework that deals with this problem in an end-to-end streaming fashion. SURIT employs the recurrent neural network transducer (RNN-T) as the backbone for both speech recognition and speaker identification. We validate our idea on the LibrispeechMix dataset -- a multi-talker dataset derived from Librispeech, and present encouraging results.

* 5 pages, 2 figures, submitted to Interspeech 2021 

Spectro-Temporal Deep Features for Disordered Speech Assessment and Recognition

Jan 14, 2022
Mengzhe Geng, Shansong Liu, Jianwei Yu, Xurong Xie, Shoukang Hu, Zi Ye, Zengrui Jin, Xunying Liu, Helen Meng

Automatic recognition of disordered speech remains a highly challenging task to date. Sources of variability commonly found in normal speech including accent, age or gender, when further compounded with the underlying causes of speech impairment and varying severity levels, create large diversity among speakers. To this end, speaker adaptation techniques play a vital role in current speech recognition systems. Motivated by the spectro-temporal level differences between disordered and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectro-temporal subspace basis embedding deep features derived by SVD decomposition of speech spectrum are proposed to facilitate both accurate speech intelligibility assessment and auxiliary feature based speaker adaptation of state-of-the-art hybrid DNN and end-to-end disordered speech recognition systems. Experiments conducted on the UASpeech corpus suggest the proposed spectro-temporal deep feature adapted systems consistently outperformed baseline i-Vector adaptation by up to 2.63% absolute (8.6% relative) reduction in word error rate (WER) with or without data augmentation. Learning hidden unit contribution (LHUC) based speaker adaptation was further applied. The final speaker adapted system using the proposed spectral basis embedding features gave an overall WER of 25.6% on the UASpeech test set of 16 dysarthric speakers

* Proceedings of INTERSPEECH 2021 

"Notic My Speech" -- Blending Speech Patterns With Multimedia

Jun 12, 2020
Dhruva Sahrawat, Yaman Kumar, Shashwat Aggarwal, Yifang Yin, Rajiv Ratn Shah, Roger Zimmermann

Speech as a natural signal is composed of three parts - visemes (visual part of speech), phonemes (spoken part of speech), and language (the imposed structure). However, video as a medium for the delivery of speech and a multimedia construct has mostly ignored the cognitive aspects of speech delivery. For example, video applications like transcoding and compression have till now ignored the fact how speech is delivered and heard. To close the gap between speech understanding and multimedia video applications, in this paper, we show the initial experiments by modelling the perception on visual speech and showing its use case on video compression. On the other hand, in the visual speech recognition domain, existing studies have mostly modeled it as a classification problem, while ignoring the correlations between views, phonemes, visemes, and speech perception. This results in solutions which are further away from how human perception works. To bridge this gap, we propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding. We conduct experiments on three public visual speech recognition datasets. The experimental results show that our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate. Moreover, we show that there is a strong correlation between our model's understanding of multi-view speech and the human perception. This characteristic benefits downstream applications such as video compression and streaming where a significant number of less important frames can be compressed or eliminated while being able to maximally preserve human speech understanding with good user experience.

* Under Review 

Accented Speech Recognition: Benchmarking, Pre-training, and Diverse Data

May 16, 2022
Alëna Aksënova, Zhehuai Chen, Chung-Cheng Chiu, Daan van Esch, Pavel Golik, Wei Han, Levi King, Bhuvana Ramabhadran, Andrew Rosenberg, Suzan Schwartz, Gary Wang

Building inclusive speech recognition systems is a crucial step towards developing technologies that speakers of all language varieties can use. Therefore, ASR systems must work for everybody independently of the way they speak. To accomplish this goal, there should be available data sets representing language varieties, and also an understanding of model configuration that is the most helpful in achieving robust understanding of all types of speech. However, there are not enough data sets for accented speech, and for the ones that are already available, more training approaches need to be explored to improve the quality of accented speech recognition. In this paper, we discuss recent progress towards developing more inclusive ASR systems, namely, the importance of building new data sets representing linguistic diversity, and exploring novel training approaches to improve performance for all users. We address recent directions within benchmarking ASR systems for accented speech, measure the effects of wav2vec 2.0 pre-training on accented speech recognition, and highlight corpora relevant for diverse ASR evaluations.

* 5 pages, 3 tables 

LRSpeech: Extremely Low-Resource Speech Synthesis and Recognition

Aug 09, 2020
Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao, Tie-Yan Liu

Speech synthesis (text to speech, TTS) and recognition (automatic speech recognition, ASR) are important speech tasks, and require a large amount of text and speech pairs for model training. However, there are more than 6,000 languages in the world and most languages are lack of speech training data, which poses significant challenges when building TTS and ASR systems for extremely low-resource languages. In this paper, we develop LRSpeech, a TTS and ASR system under the extremely low-resource setting, which can support rare languages with low data cost. LRSpeech consists of three key techniques: 1) pre-training on rich-resource languages and fine-tuning on low-resource languages; 2) dual transformation between TTS and ASR to iteratively boost the accuracy of each other; 3) knowledge distillation to customize the TTS model on a high-quality target-speaker voice and improve the ASR model on multiple voices. We conduct experiments on an experimental language (English) and a truly low-resource language (Lithuanian) to verify the effectiveness of LRSpeech. Experimental results show that LRSpeech 1) achieves high quality for TTS in terms of both intelligibility (more than 98% intelligibility rate) and naturalness (above 3.5 mean opinion score (MOS)) of the synthesized speech, which satisfy the requirements for industrial deployment, 2) achieves promising recognition accuracy for ASR, and 3) last but not least, uses extremely low-resource training data. We also conduct comprehensive analyses on LRSpeech with different amounts of data resources, and provide valuable insights and guidances for industrial deployment. We are currently deploying LRSpeech into a commercialized cloud speech service to support TTS on more rare languages.

* KDD 2020 

Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks

Jan 10, 2017
Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, Cesar Laurent Yoshua Bengio, Aaron Courville

Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic features for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.


Huqariq: A Multilingual Speech Corpus of Native Languages of Peru for Speech Recognition

Jul 12, 2022
Rodolfo Zevallos, Luis Camacho, Nelsi Melgarejo

The Huqariq corpus is a multilingual collection of speech from native Peruvian languages. The transcribed corpus is intended for the research and development of speech technologies to preserve endangered languages in Peru. Huqariq is primarily designed for the development of automatic speech recognition, language identification and text-to-speech tools. In order to achieve corpus collection sustainably, we employ the crowdsourcing methodology. Huqariq includes four native languages of Peru, and it is expected that by the end of the year 2022, it can reach up to 20 native languages out of the 48 native languages in Peru. The corpus has 220 hours of transcribed audio recorded by more than 500 volunteers, making it the largest speech corpus for native languages in Peru. In order to verify the quality of the corpus, we present speech recognition experiments using 220 hours of fully transcribed audio.

* Language Resources and Evaluation Conference (LREC 2022) 

Significance of Data Augmentation for Improving Cleft Lip and Palate Speech Recognition

Oct 02, 2021
Protima Nomo Sudro, Rohan Kumar Das, Rohit Sinha, S. R. Mahadeva Prasanna

The automatic recognition of pathological speech, particularly from children with any articulatory impairment, is a challenging task due to various reasons. The lack of available domain specific data is one such obstacle that hinders its usage for different speech-based applications targeting pathological speakers. In line with the challenge, in this work, we investigate a few data augmentation techniques to simulate training data for improving the children speech recognition considering the case of cleft lip and palate (CLP) speech. The augmentation techniques explored in this study, include vocal tract length perturbation (VTLP), reverberation, speaking rate, pitch modification, and speech feature modification using cycle consistent adversarial networks (CycleGAN). Our study finds that the data augmentation methods significantly improve the CLP speech recognition performance, which is more evident when we used feature modification using CycleGAN, VTLP and reverberation based methods. More specifically, the results from this study show that our systems produce an improved phone error rate compared to the systems without data augmentation.


Analyzing Large Receptive Field Convolutional Networks for Distant Speech Recognition

Oct 15, 2019
Salar Jafarlou, Soheil Khorram, Vinay Kothapally, John H. L. Hansen

Despite significant efforts over the last few years to build a robust automatic speech recognition (ASR) system for different acoustic settings, the performance of the current state-of-the-art technologies significantly degrades in noisy reverberant environments. Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial improvements in many speech processing applications including distant speech recognition (DSR). However, standard CNN architectures were not efficient in capturing long-term speech dynamics, which are essential in the design of a robust DSR system. In the present study, we address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass networks. To compare the efficacy of the aforementioned architectures with the standard CNN for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition system. We extend the study to evaluate the system performances for distant speech simulated using realistic room impulse responses (RIRs). Our experiments show that with fixed number of parameters across all architectures, the large receptive field networks show consistent improvements over the standard CNNs for distant speech. Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with a 8.9% relative reduction in word error rate (WER) and 10.7% relative improvement in frame accuracy compared to the standard CNNs for distant simulated speech signals.

* ASRU 2019 

Multi-layer Attention Mechanism for Speech Keyword Recognition

Jul 10, 2019
Ruisen Luo, Tianran Sun, Chen Wang, Miao Du, Zuodong Tang, Kai Zhou, Xiaofeng Gong, Xiaomei Yang

As an important part of speech recognition technology, automatic speech keyword recognition has been intensively studied in recent years. Such technology becomes especially pivotal under situations with limited infrastructures and computational resources, such as voice command recognition in vehicles and robot interaction. At present, the mainstream methods in automatic speech keyword recognition are based on long short-term memory (LSTM) networks with attention mechanism. However, due to inevitable information losses for the LSTM layer caused during feature extraction, the calculated attention weights are biased. In this paper, a novel approach, namely Multi-layer Attention Mechanism, is proposed to handle the inaccurate attention weights problem. The key idea is that, in addition to the conventional attention mechanism, information of layers prior to feature extraction and LSTM are introduced into attention weights calculations. Therefore, the attention weights are more accurate because the overall model can have more precise and focused areas. We conduct a comprehensive comparison and analysis on the keyword spotting performances on convolution neural network, bi-directional LSTM cyclic neural network, and cyclic neural network with the proposed attention mechanism on Google Speech Command datasets V2 datasets. Experimental results indicate favorable results for the proposed method and demonstrate the validity of the proposed method. The proposed multi-layer attention methods can be useful for other researches related to object spotting.