Abstract:We introduce a data-driven approach for enabling word-level timestamp prediction in the Canary model. Accurate timestamp information is crucial for a variety of downstream tasks such as speech content retrieval and timed subtitles. While traditional hybrid systems and end-to-end (E2E) models may employ external modules for timestamp prediction, our approach eliminates the need for separate alignment mechanisms. By leveraging the NeMo Forced Aligner (NFA) as a teacher model, we generate word-level timestamps and train the Canary model to predict timestamps directly. We introduce a new <|timestamp|> token, enabling the Canary model to predict start and end timestamps for each word. Our method demonstrates precision and recall rates between 80% and 90%, with timestamp prediction errors ranging from 20 to 120 ms across four languages, with minimal WER degradation. Additionally, we extend our system to automatic speech translation (AST) tasks, achieving timestamp prediction errors around 200 milliseconds.
Abstract:Advanced plant phenotyping technologies play a crucial role in targeted trait improvement and accelerating intelligent breeding. Due to the species diversity of plants, existing methods heavily rely on large-scale high-precision manually annotated data. For self-occluded objects at the grain level, unsupervised methods often prove ineffective. This study proposes IPENS, an interactive unsupervised multi-target point cloud extraction method. The method utilizes radiance field information to lift 2D masks, which are segmented by SAM2 (Segment Anything Model 2), into 3D space for target point cloud extraction. A multi-target collaborative optimization strategy is designed to effectively resolve the single-interaction multi-target segmentation challenge. Experimental validation demonstrates that IPENS achieves a grain-level segmentation accuracy (mIoU) of 63.72% on a rice dataset, with strong phenotypic estimation capabilities: grain volume prediction yields R2 = 0.7697 (RMSE = 0.0025), leaf surface area R2 = 0.84 (RMSE = 18.93), and leaf length and width predictions achieve R2 = 0.97 and 0.87 (RMSE = 1.49 and 0.21). On a wheat dataset,IPENS further improves segmentation accuracy to 89.68% (mIoU), with equally outstanding phenotypic estimation performance: spike volume prediction achieves R2 = 0.9956 (RMSE = 0.0055), leaf surface area R2 = 1.00 (RMSE = 0.67), and leaf length and width predictions reach R2 = 0.99 and 0.92 (RMSE = 0.23 and 0.15). This method provides a non-invasive, high-quality phenotyping extraction solution for rice and wheat. Without requiring annotated data, it rapidly extracts grain-level point clouds within 3 minutes through simple single-round interactions on images for multiple targets, demonstrating significant potential to accelerate intelligent breeding efficiency.
Abstract:Multi-task and multilingual approaches benefit large models, yet speech processing for low-resource languages remains underexplored due to data scarcity. To address this, we present Granary, a large-scale collection of speech datasets for recognition and translation across 25 European languages. This is the first open-source effort at this scale for both transcription and translation. We enhance data quality using a pseudo-labeling pipeline with segmentation, two-pass inference, hallucination filtering, and punctuation restoration. We further generate translation pairs from pseudo-labeled transcriptions using EuroLLM, followed by a data filtration pipeline. Designed for efficiency, our pipeline processes vast amount of data within hours. We assess models trained on processed data by comparing their performance on previously curated datasets for both high- and low-resource languages. Our findings show that these models achieve similar performance using approx. 50% less data. Dataset will be made available at https://hf.co/datasets/nvidia/Granary
Abstract:Existing 4D Gaussian Splatting methods rely on per-Gaussian deformation from a canonical space to target frames, which overlooks redundancy among adjacent Gaussian primitives and results in suboptimal performance. To address this limitation, we propose Anchor-Driven Deformable and Compressed Gaussian Splatting (ADC-GS), a compact and efficient representation for dynamic scene reconstruction. Specifically, ADC-GS organizes Gaussian primitives into an anchor-based structure within the canonical space, enhanced by a temporal significance-based anchor refinement strategy. To reduce deformation redundancy, ADC-GS introduces a hierarchical coarse-to-fine pipeline that captures motions at varying granularities. Moreover, a rate-distortion optimization is adopted to achieve an optimal balance between bitrate consumption and representation fidelity. Experimental results demonstrate that ADC-GS outperforms the per-Gaussian deformation approaches in rendering speed by 300%-800% while achieving state-of-the-art storage efficiency without compromising rendering quality. The code is released at https://github.com/H-Huang774/ADC-GS.git.
Abstract:Accurate building damage assessment using bi-temporal multi-modal remote sensing images is essential for effective disaster response and recovery planning. This study proposes a novel Building-Guided Pseudo-Label Learning Framework to address the challenges of mapping building damage from pre-disaster optical and post-disaster SAR images. First, we train a series of building extraction models using pre-disaster optical images and building labels. To enhance building segmentation, we employ multi-model fusion and test-time augmentation strategies to generate pseudo-probabilities, followed by a low-uncertainty pseudo-label training method for further refinement. Next, a change detection model is trained on bi-temporal cross-modal images and damaged building labels. To improve damage classification accuracy, we introduce a building-guided low-uncertainty pseudo-label refinement strategy, which leverages building priors from the previous step to guide pseudo-label generation for damaged buildings, reducing uncertainty and enhancing reliability. Experimental results on the 2025 IEEE GRSS Data Fusion Contest dataset demonstrate the effectiveness of our approach, which achieved the highest mIoU score (54.28%) and secured first place in the competition.
Abstract:Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
Abstract:Hyperspectral image (HSI) fusion is an efficient technique that combines low-resolution HSI (LR-HSI) and high-resolution multispectral images (HR-MSI) to generate high-resolution HSI (HR-HSI). Existing supervised learning methods (SLMs) can yield promising results when test data degradation matches the training ones, but they face challenges in generalizing to unknown degradations. To unleash the potential and generalization ability of SLMs, we propose a novel self-supervised unknown-to-known degradation transformation framework (U2K) for blind HSI fusion, which adaptively transforms unknown degradation into the same type of degradation as those handled by pre-trained SLMs. Specifically, the proposed U2K framework consists of: (1) spatial and spectral Degradation Wrapping (DW) modules that map HR-HSI to unknown degraded HR-MSI and LR-HSI, and (2) Degradation Transformation (DT) modules that convert these wrapped data into predefined degradation patterns. The transformed HR-MSI and LR-HSI pairs are then processed by a pre-trained network to reconstruct the target HR-HSI. We train the U2K framework in a self-supervised manner using consistency loss and greedy alternating optimization, significantly improving the flexibility of blind HSI fusion. Extensive experiments confirm the effectiveness of our proposed U2K framework in boosting the adaptability of five existing SLMs under various degradation settings and surpassing state-of-the-art blind methods.
Abstract:3D Gaussian Splatting (3DGS) has emerged as an efficient and high-fidelity paradigm for novel view synthesis. To adapt 3DGS for dynamic content, deformable 3DGS incorporates temporally deformable primitives with learnable latent embeddings to capture complex motions. Despite its impressive performance, the high-dimensional embeddings and vast number of primitives lead to substantial storage requirements. In this paper, we introduce a \textbf{Light}weight \textbf{4}D\textbf{GS} framework, called Light4GS, that employs significance pruning with a deep context model to provide a lightweight storage-efficient dynamic 3DGS representation. The proposed Light4GS is based on 4DGS that is a typical representation of deformable 3DGS. Specifically, our framework is built upon two core components: (1) a spatio-temporal significance pruning strategy that eliminates over 64\% of the deformable primitives, followed by an entropy-constrained spherical harmonics compression applied to the remainder; and (2) a deep context model that integrates intra- and inter-prediction with hyperprior into a coarse-to-fine context structure to enable efficient multiscale latent embedding compression. Our approach achieves over 120x compression and increases rendering FPS up to 20\% compared to the baseline 4DGS, and also superior to frame-wise state-of-the-art 3DGS compression methods, revealing the effectiveness of our Light4GS in terms of both intra- and inter-prediction methods without sacrificing rendering quality.
Abstract:WiFi-based human activity recognition (HAR) holds significant promise for ubiquitous sensing in smart environments. A critical challenge lies in enabling systems to dynamically adapt to evolving scenarios, learning new activities without catastrophic forgetting of prior knowledge, while adhering to the stringent computational constraints of edge devices. Current approaches struggle to reconcile these requirements due to prohibitive storage demands for retaining historical data and inefficient parameter utilization. We propose WECAR, an end-edge collaborative inference and training framework for WiFi-based continuous HAR, which decouples computational workloads to overcome these limitations. In this framework, edge devices handle model training, lightweight optimization, and updates, while end devices perform efficient inference. WECAR introduces two key innovations, i.e., dynamic continual learning with parameter efficiency and hierarchical distillation for end deployment. For the former, we propose a transformer-based architecture enhanced by task-specific dynamic model expansion and stability-aware selective retraining. For the latter, we propose a dual-phase distillation mechanism that includes multi-head self-attention relation distillation and prefix relation distillation. We implement WECAR based on heterogeneous hardware using Jetson Nano as edge devices and the ESP32 as end devices, respectively. Our experiments across three public WiFi datasets reveal that WECAR not only outperforms several state-of-the-art methods in performance and parameter efficiency, but also achieves a substantial reduction in the model's parameter count post-optimization without sacrificing accuracy. This validates its practicality for resource-constrained environments.
Abstract:Implicit Neural Representations (INRs) have emerged as a powerful approach for video representation, offering versatility across tasks such as compression and inpainting. However, their implicit formulation limits both interpretability and efficacy, undermining their practicality as a comprehensive solution. We propose a novel video representation based on deformable 2D Gaussian splatting, dubbed D2GV, which aims to achieve three key objectives: 1) improved efficiency while delivering superior quality; 2) enhanced scalability and interpretability; and 3) increased friendliness for downstream tasks. Specifically, we initially divide the video sequence into fixed-length Groups of Pictures (GoP) to allow parallel training and linear scalability with video length. For each GoP, D2GV represents video frames by applying differentiable rasterization to 2D Gaussians, which are deformed from a canonical space into their corresponding timestamps. Notably, leveraging efficient CUDA-based rasterization, D2GV converges fast and decodes at speeds exceeding 400 FPS, while delivering quality that matches or surpasses state-of-the-art INRs. Moreover, we incorporate a learnable pruning and quantization strategy to streamline D2GV into a more compact representation. We demonstrate D2GV's versatility in tasks including video interpolation, inpainting and denoising, underscoring its potential as a promising solution for video representation. Code is available at: \href{https://github.com/Evan-sudo/D2GV}{https://github.com/Evan-sudo/D2GV}.